elsur.jpn.org >

« 覚え書き: 空間計量経済学における忌まわしき英字三文字略語たち | メイン | 読了:Chandra, Kumar, Aditya (2018) 二値データの小地域推定 »

2018年7月13日 (金)

Wall, M.M. (2004) A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Plannning and Inference, 121, 311-324.
 仕事の合間に読んだ奴。空間計量経済学でいうところのSARモデル(同時自己回帰モデル)とCARモデル(条件つき自己回帰モデル)は、特に不規則格子に適用したとき、意外な相関構造をもたらすよ、という論文。
 なんの気なしに読み始めたら、これがほんとに面白くって... 最後まで一気読みしてしまった。

 説明の都合上、まずはモデルの定式化から。
 $\{A_1, \ldots, A_n\}$が$D$の格子になっているとする(つまり、$D$を重なりなく完全に分割しているとする)。$\{Z(A_i): A_i \in (A_1, \ldots, A_n)\}$をガウス過程とする。
 [以下、本文ではいちいち$Z(A_i)$と書いているけど、うざいので$Y_i$と略記する]

 SARモデルとは、
 $Y_i = \mu_i + \sum_j^n b_{ij} (Y_j - \mu_j) + \epsilon_i$
 $\mathbf{\epsilon} = (\epsilon_1, \ldots, \epsilon_n)' \sim N(\mathbf{0}, \mathbf{\Lambda})$
ただし$\mathbf{\Lambda}$は対角行列。$\mu_i = E[Y_i]$。$b_{ij}$は定数で($b_{ii}=0$)、既知でも未知でもよい。[この定式化だと、空間自己回帰パラメータは$b_{ij}$のなかに入ってるわけね]
 $n$が有限なら、$\mathbf{Y} = (Y_1, \ldots, Y_n)'$, $\mathbf{\mu} = (\mu_1, \ldots, \mu_n)'$, $\mathbf{B} = (b_{ij})$として
 $\mathbf{Y} \sim N(\mathbf{\mu}, (\mathbf{I} - \mathbf{B})^{-1} \mathbf{\Lambda} (\mathbf{I} - \mathbf{B})^{-1'})$
である。$\mathbf{B}$は、隣接行列を$\mathbf{W}$として$\mathbf{B} = \rho_s \mathbf{W}$とすることが多い。この場合
 $\mathbf{Y} \sim N(\mathbf{\mu}, (\mathbf{I} - \rho_s \mathbf{W})^{-1} \mathbf{\Lambda} (\mathbf{I} - \rho_s \mathbf{W})^{-1'})$
である。

 CARモデルでは、$Y_{-i} = \{Y_j: j \neq i\}$と書くとして
 $Y_i | Y_{-i} \sim N \left( \mu_i + \sum_j^n c_{ij} (Y_j - \mu_j), \tau^2_i \right)$
ただし、$\mu_i = E[Y_i]$。$c_{ij}$は定数で($c_{ii}=0$)、既知でも未知でもよい。
 $n$が有限なら、$\mathbf{C} = (c_{ij})$とし、対角に$\tau_i^2$を持つ対角行列を$\mathbf{T}$として
 $\mathbf{Y} \sim N(\mathbf{\mu}, (\mathbf{I} - \mathbf{C})^{-1} \mathbf{T})$
である。$\mathbf{C}$は、隣接行列を$\mathbf{W}$として$\mathbf{C} = \rho_c \mathbf{W}$とすることが多い。この場合
 $\mathbf{Y} \sim N(\mathbf{\mu}, (\mathbf{I} - \rho_c \mathbf{W})^{-1} \mathbf{T})$
である。

 隣接行列$\mathbf{W}$の要素$w_{ij}$は、隣だったら1, そうでなかったら0とすることが多いが、行の和を1にしたり、もっといろいろ工夫することもある。行で基準化する理由は、近接地域の数が変動するときに内的整合性が失われるからである。
 なお、CARモデルでは$\mathbf{W}$と$\mathbf{T}$が$w_{ij} \tau_j^2 = w_{ji} \tau_i^2$を満たさなければならない。
 
 なお、CARをもっと限定したICAR(intrinsic CAR)モデルもあるが、ここでは扱わない。

 準備はできた。ここからが本題。

 米48州のSAT言語得点平均をモデル化してみる。共変量は受験率とし(中部の州は受験率が低く得点平均が高い)、二次の項もいれる。
 誤差項について次の4つのモデルを比較する。

 誤差項の予測値を比較すると、SARとCARはだいたい同じで(CARのほうが分散が大きい)、バリオグラムモデルとはずいぶんちがう。よくみると、SARとCARでは隣接している2州のあいだでも相関がちがっている[ああそうか、州の形が不規則だからね]。バリオグラムモデルの場合は経験バリオグラムをみれば残差の空間構造が適切かどうかチェックできるが、SARとCARでは共分散に体系的な構造がなく、それが空間構造の記述として適切かどうかを調べる方法がないのである。[←なるほどー]

 こんどは、同じ米48州の隣接行列$\mathbf{W}$を使って、SARとCARの共分散行列が$\rho_s, \rho_c$とともにどう変わるかを調べてみよう。つまりこれはデータと関係ない話である。
 $\rho_s$と$\rho_c$がとりうる範囲は、$\mathbf{W}$の固有値を$\omega_i$として、$i=1, \ldots, n$について$\rho_s \omega_i < 1$, $\rho_c \omega_i < 1$である、と通常考えられている。厳密にいうと、SARモデルの場合には$\rho_s \neq 1/\omega_i$が満たされていればよいのだが、$\rho_s$の解釈が難しくなる。[...このくだり、理解が追いつかない。あとで勉強しておこう。Haining(1990)という教科書がreferされている]
 まあとにかく、この米48州の隣接行列でいえば、$\rho_s, \rho_c$は(-1.392, 1)の範囲を動ける。
 $\rho_s, \rho_c$を動かしながら、隣接州(107ペア)の相関がどうなるかをチャートにしてみると、面白いことがわかる。
 $\rho_s, \rho_c$が0のとき、隣接州の相関は0になる。増やしていくと相関も単調に上がっていき、1まで増やせばみんな相関1になる。なお、CARモデルで$\rho_c$を増やした時よりも、SARモデルで$\rho_s$を増やしたときのほうが、隣接州の相関は速く上がる。ここまでは、まあ、いいですよね。
 問題はここからだ。隣接州107ペアの相関の高さの順序は一定でない。$\rho_s$なり$\rho_c$なりを増やしていくと、順序がどんどん入れ替わっていくのだ。
 さらに。$\rho_s, \rho_c$を負の方向に動かした時は奇妙なことが起こる。最初はどのペアの相関も負になっていくが、途中から突然正の相関を持つペアが生じるのである。結局、107ペアのうち37ペアは正になる。どういうペアが正になるかを簡単に説明する方法はない。
 
 このように、SARモデル・CARモデルによる空間相関は直観に反する。なお、これは$\mathbf{W}$の行規準化をやめても変わらない。

 かつてCressie(1993)は、$\mathbf{B}, \mathbf{C}$を「空間従属行列」と呼んだ。この行列の要素$(i,j)$は、地点$i, j$の相互作用の程度を表現していると考えられてきた。そういう言い方は実はミスリーディングである。空間構造を本当に説明しているのは$(\mathbf{I} - \mathbf{B})^{-1}$, $(\mathbf{I} - \mathbf{C})^{-1}$である。$\mathbf{B}, \mathbf{C}$と空間相関のあいだに直観的な関係はない。空間構造に関心があるなら、地球統計学のモデルのように、共分散構造を直接モデル化する手を考えたほうが良い。

 SARモデル・CARモデルは広く使われているが、その意味についてきちんと考えている人は少ない。これはおそらく、分析者の関心が空間構造そのものというより回帰の予測子に向けられているからだろう。しかし!もしあなたが、モデルがデータに合致しているかどうかを決めようという立場なら、まずはモデルの意味を知ろうとしたほうがいいんじゃないですか?
 云々。

 。。。いやー、これは面白かった。
 このたび小地域推定の関連で勉強していて、SARモデルやCARモデルって直観的にはどういうことなのだろうかと不思議に思っていたのである。だって、どちらもローカルな空間的従属性についてモデル化しているのに、結局は大域的な相関構造が生まれるじゃないですか。隣接行列をいくら思い返しても、相関行列が想像できない。そうか、あれは直観的にわかる話ではないのね。謎が氷解したという感じだ。
 空間自己相関パラメータが負になった時にとんでもないことが起きるというのも面白かった。たしかにね、地域の形が不規則だったら、なにが起きても不思議でない。
 というわけで、きちんと積み上げて勉強している人にとっては当たり前の話をしているのかもしれないけど、私のように付け焼刃だけで凌いでいる者にとっては、とても啓蒙的な論文であった。思わずwebで写真を探してしまった(町内会の会合にクッキー持ってきそうな、気の良さそうな女性であった)。メラニー先生、どうもありがとー。

論文:データ解析(2018-) - 読了: Wall (2004) SARモデル・CARモデルは実は君が思っているような空間モデルではないかもしれないよ?