elsur.jpn.org >

« 読了: Browne (2001) 探索的因子分析の回転法を総ざらえ | メイン | 読了:Forlines, Miller, Guelcher, & Bruzzi (2014) 予測の集約を社会的ネットワークを使って改善する »

2014年9月10日 (水)

以下、日本経営工学会(JIMA)という学会の機関誌「経営システム」の、2010年の「予測市場と集合知」特集号の論文。実はこれ、すべてWeb上で公開されており, 前半は既読だったのだが(ディスプレイ上で)、先日冊子版を頂いたので、出張の帰りに読み直した。せっかくなのでメモしておく。

山口浩 (2010) 予測市場と集合知メカニズムの現状と展望: 「神の手」と「衆愚」の間. 経営システム, 20(5), 234-238.
 ええと、予測市場の先行研究として、ハイエク、Rollという人(オレンジジュースの先物市場と将来の天候)、IEMを紹介。メカニズム例を紹介(ダブル・オークション)。予測市場の背景として以下を挙げる: (1)標本の偏りの影響を受けにくい, (2)分散型意思決定メカニズム全体への関心の高まり。証券市場メカニズム以外の提案として、(1)UIをわかりやすくする(マシンエージェントとか), (2)選択肢に対する投票, (3)予測対象が取りうる値の範囲を推測させ集計。展望として、予測・意思決定メカニズムとしてだけではなく、組織コミットメント促進のツールとしての用途を示唆。

佐藤哲也 (2010) 選挙と対象とした予測市場. 経営システム, 20(5), 239-242.
 選挙予測はそれ自体に経済的意義がある。さらに予測市場による選挙予測は、様々な予測者が観察した事実、それに基づくメタ認知を継続的に集約する、世論計測技術としての意義がある。先行例としてIEM、はてな総選挙を紹介。最後に、佐藤先生がやってたshuugi.inの2009年の結果を紹介。
 shuugi.inではバブル防止のためにこういう工夫をしていたそうだ。内部で「値上がり期待」「値下がり期待」という証券を用意する。価格は常に同じ。前者はふつうの株式と同じで、値が上がると利益が出る。後者は逆に値が下がると利益が出る、つまり空売りしているようなものである(損失が膨れ上がると強制的に精算させられる)。空売りっていうのはつまり価格の下落局面でも利益がでる仕組みなわけで、バブルの防止になる由。へええ。

水山元 (2010) 予測市場による経営の意思決定支援に向けて. 経営システム, 20(5), 243-248.
 これはもう繰り返し読んで、プレゼンやら学会発表やらでさんざん引用させていただいているものなので、省略。

池田心 (2010) 予測市場シミュレーションのためのエージェント群構成法. 経営システム, 20(5), 249-254.
 まずABMの紹介。著者らは個々のエージェントのミクロな挙動にではなく、「エージェント群がマクロにみてある特徴を満たすようにするためにはどうしたらいいか」に関心を持っている。
 実験例。選挙の予測市場で、候補者は二人。各エージェントの意思決定についていくつか単純な仮定をおき、各エージェントの戦略パラメータを進化させていく。ええと、多様な戦略を共進化させると、負けっぱなしの奴もいないしうまく勝ち越す戦略もない、つまりは自然な市場となっていくのだそうだ。
 うーむ、これ、難しいけど面白いなあ。いつか仕事に生かせないだろうか。

ここからは未読であった。

伊藤孝行 (2010) マルチエージェントの自動交渉機構と集合的コラボレーション支援への応用. 経営システム, 20(5), 255-267.
 大規模な意見集約や合意形成を支援するシステムの話。先行例として、MIT SloanのCollaboratoriumプロジェクトというのがあるそうだ。
 えーと、自動車かなにかの設計システム上で、ユーザが何かを作成すると、エージェントが他の人と交渉したりなんだりを勝手にやってくれる、というような仕組みらしい。従ってエージェントの課題は次の3つとなる: (1)自動交渉と合意。(2)人間の好みの推定。(3)交渉の場の提供。
 交渉とは、すなわち可能な合意点を探索すること。先行研究は多いんだけど、エージェントが持っている多属性効用関数において属性間の独立性を仮定することが多い由(フィッシュバイン・モデルみたいなもんですかね)。属性が独立していない、複雑な効用関数に基づく交渉としては、オークションを開く方法があって、でもいろいろ大変なことも多くて... 云々。ううむ、門外漢にはなかなか難しいぜ。
後半は著者らの開発事例の紹介。車、公園、庭、キャンパス緑化のデザイン支援システム。

岡村秀一郎 (2010) 投票方式による予測市場の実証実験: 数値範囲指定予測とランキング予測. 経営システム, 20(5), 268-273.
 著者はNRIの方。企業ユースを想定して開発した二つの予測システムの紹介と実証実験。
 ひとつめは、ある数値を予測するためにその範囲を投票させるシステム。いわく、企業が予測したいのは事象の生起有無よりなにかの数値であることが多いし(売上とかね)、ダブルオークションは少人数だと難しいし大変だし、マーケットメイクは予測の正しさを儲けに連動させにくいし、数値のピンポイント予測は至難の業だし、結局は範囲の投票が一番いい、とのこと。なるほど。
 予測の正確さに応じて配当を渡す。配当の計算式は、範囲が狭いとハイリスク・ハイリターンになるとか、早めに投票すると得しやすいとか、いろいろ工夫してある。
 実験。調査モニタパネル(どこのだろう?)を対象者として、ガソリン価格、プラズマテレビの最安値、ドラマ「イノセント・ラブ」の視聴率を予測させた。あんましうまくいかなかった。
 ふたつめは、選択肢に資金を投入させるシステム。実験: ツタヤ・オンラインの会員を対象に、セルCDシングルの来週のベストテンを予測させる、というのを8週繰り返した。調べているのは、全員を合計した投資配分の順位と実際の順位の一致。なんだかんだでいろいろ課題がある、というのが結論。
 二つ目の実験、面白いなあ。集計データではなく個人データを分析してみたいものだ。

多ヶ谷有・淺田 克暢 (2010) 新商品需要予測のための予測市場システム. 経営システム, 20(5), 274-278.
 著者はキャノンITソリューションの方。やばい... これ超面白い... 早く読んでおくべきだった...
 題名のとおり、新製品の需要予測のための社内ユース向け予測市場をつくったという話である。証券は需要予測の範囲、つまり「aからbまでのあいだに需要が落ちる」という証券である。当然、ダブルオークションってわけにもいかなくなるので、マーケットメーカ方式になる。マーケットメーカは、予測値の数直線の上に正規分布があると考えていて、区間[a, b]の面積に応じて価格を決める。で、株の販売状況に応じて、人気のある区間の価格が高くなるように、正規分布を更新していく。最終的にはこの正規分布が予測分布になるわけだ。
 で、実際にシステムをつくった。画面上で数値範囲をクリックすると価格が表示されたり、自己資産がどう変わるかシミュレーションが出たりする。売買の際にはコメントを書いてもらってそれを公開する(←面白い!)。
 実験。社内での実験で、内閣支持率、スキー場の降雪量、ある週の部内出勤延べ数、を取引させたら、短期売買で差益を狙ったり、沈んでいる参加者が逆転を狙って変な区間を大量買いしたりしたそうだ。さすがは理系企業...
 いやあ、これは勉強になった。
 それにしても、こうやって区間可変型の証券を使うことのメリットとデメリットはなんだろう。参加者にとっては、たとえマーケットメーカ方式であっても、固定区間ごとに証券が発行されているほうがずっとわかりやすいような気がする (現在の価格が表で一覧できるから)。証券は固定区間型にし、区切り方を事前にちゃっちゃとうまく決める方法を開発する、という路線もありそうだ(質問紙調査の出番ではないかしらん)。あるいは、最初はおおざっぱな区間にしておいて、人気の区間を途中で分割していくのはどうだろう。発行済み証券も1株を0.5株ふたつに分割しちゃうのだ。
 このシステムで使っている価格更新の仕方についてはMizuyama, et al.(2010, J. Japan Industrial Mgmt Assoc.)を、固定区間型証券についてはPlott(2000, Southern Econ. J.)を読むといいらしい。 

論文:予測市場 - 読了:「予測市場と集合知」特集号 (2010)

rebuilt: 2020年11月16日 22:57
validate this page