elsur.jpn.org >

« 読了:Camerer, Ho, & Chong (2004) ゲームの認知階層モデル | メイン | 読了:Dahan & Mendelson (2001) コンセプト・テストの極値モデル »

2016年1月27日 (水)

 週末にぼけーっとめくっていたビジネス誌で経済学者の方が紹介していて、なんだか面白そうなので探して読んだ論文。自分だけは勝ち組になれるかもと思っている哀れなサラリーマン向けの嫌ったらしい雑誌だと思っていたが、たまには役に立つぞ、日経ビジネス!

Binder, C.C. (2015) Measuring Uncertainty Based on Rounding: New Method and Application to Inflation Expectations. Working Paper, August 25, 2015.
 たとえば「将来のインフレ率は何パーセントだと思うか」というような、数値を尋ねる設問では、キリの良い数字を答える人は確信度が低いことが多い。そこから逆に確信度を推定する、という話。
 著者が公開しているWorking Paperを読んだ。under reviewとのこと。
 
 著者いわく。
 個人の信念の不確実性をどうやって測定するか[←たとえば、ある人が将来インフレがどのくらいの確率で起きると思うかを調べたとして、その人がどのくらいの確信をもってそう信じているのかをどうやって調べるか]。これは重要な問題だ。信念を確率分布のかたちで直接訊くのは難しい。対象者間の不一致性とかボラタリティとかで代用することが多いけど、ミクロレベル[←個人レベルということであろう]での測定ではない。
 昔から、確信度が低い人は丸めた数字を答えやすいことが知られている。この性質を使った手法をご提案します。
 長所: (1)ミクロレベルの測定です。(2)信念の形成過程についてはなんら仮定を置きません、申告過程についての仮定を置くだけです。(3)過去データに適用できます。

 丸めた数字(5の倍数とか)は「正確でない」ということを伝えるために使われる。「497人が参加しました」といったらそれは497人だけど、「500人が参加しました」といったらそれは約500人だ。Krifka (2009 Theory & Evidence in Semantics)はこれを「丸めた数字は丸めた解釈を示唆する」原理(RNRI原理)と呼んでいる。
 実証的研究による証拠もある:

 Michigan Survey of Consumers (MSC) におけるインフレ期待の設問をみてみよう。国レベルの電話調査で、対象者は毎月500世帯(うち4割は半年前の対象者)。「これからの12ヶ月で、物価は平均して何パーセントくらい下がる/下がるでしょうか?」と尋ね、整数ないしDKを答えさせる。みよ、このヒストグラムを。5の倍数が多い(「3%」もちょっと多いけど)。
 5の倍数の回答者だけ取り出すと、実際のインフレ率からの誤差(MAE, RMSE)が大きく、2回参加した人における回答の変更率が高く、2回目調査でのDK率が高い。[←おおお... ただの思弁的議論じゃなくて、こういう証拠を持っているのか、やるなあ]

 さて、回答者の確信度をどうやって測るか。簡単に思いつくのは、「5の倍数」だったら確信度低だとみなすという手だが、これはあまり宜しくない。確信を持って5の倍数を答えている人だっているかもしれないじゃないですか。

 お待たせしました、提案手法の登場です。
 消費者$i$が時点$t$において持っている、将来のインフレについての主観確率分布について、平均を$f_{it}$, 分散(=不確実性)を$v_{it}$とする。
 $v_{it}$が閾値$V$を超えている消費者をタイプH、超えていない消費者をタイプLと呼ぶ[←原文ではh, l だが、小文字のlは読みにくいので大文字に変えた]。
 回答$R_{it}$は、タイプHでは$f_{it}$にもっとも近い5の倍数、タイプLでは$f_{it}$にもっとも近い整数になる、と仮定する。
 回答が5の倍数でなかったら、その人はタイプLだ。しかし、回答が5の倍数の場合、その人のタイプはわからない。そこで、ある人がタイプHである確率を$\zeta_{it}$とし、これを最尤推定しよう。

 どうやるかというと...
 タイプHの$f_{it}$の分布を$N(\mu_{Ht}, \sigma_{Ht}^2)$, タイプLの$f_{it}$の分布を$N(\mu_{Lt}, \sigma_{Lt}^2)$とする。
 ある$t$における$R_{it}$の分布は2つの確率質量関数の混合分布である。ひとつはタイプLの確率質量分布$\phi_t^L$で、サポートは整数。もうひとつはタイプHの確率質量関数$\phi_t^H$で、サポートは5の倍数。それぞれ定義できる[数式略。個々のサポート点の周りに等幅の閉区間をつくって積分する]。タイプHの割合を$\lambda_{t}$として、混合分布は
 $\phi_t = \lambda_t \phi_t^H + (1-\lambda_t) \phi_t^L$
 タイプLの人数を$N_t^L$, タイプHの人数を$N_t^H$とすれば、尤度は
 $\prod_{j=1}^{N_t^L+N_t^H} \phi_t (R_{it} | \lambda_t, \mu_{Lt}, \mu_{Ht}, \sigma_{Lt}, \sigma_{Ht})$
 ほらね、尤度関数が書ける。5つのパラメータを最尤推定すれば、個々の対象者のタイプH確率$\zeta_{it}$が推定できるという寸法だ。$V$についてはなんら仮定していない点にご注目。
 最後に、集団レベルのインフレ不確実性指標をつくろう。上で除外していたDK回答者は$\zeta_{it}=1$だということにして、全員について$\zeta_{it}$の平均をとる。結局それは次の式になる。DK率を$DK_t$として、
 $U_t = (1-DK_t)\lambda_t+DK_t$

 MSCのインフレ期待設問に当てはめて観察。$\zeta_{it}$が高い人は、実際のインフレ率に対するインフレ期待の誤差が大きく、2回調査参加したときのインフレ期待の変化が大きい。$\zeta$は2回の調査参加を通じて安定している。
 別の調査で消費者にインフレ予測を主観確率分布の形で直接聴取しているのがあって、そこから不確実性がわかるんだけど、この調査の分析にいくつか仮定を追加すると、その調査の不確実性をあてることができる由 [詳細は付録を参照とのこと]。
 デモグラで層別して$\zeta$の平均をみると、高年収、高学歴、男、30-60台で低い... などなど、別調査での結果と整合している。

 インフレ不確実性指標$U_t$の時系列をみると、'81-'82の不景気で高く、湾岸戦争でも上昇。実際のインフレ率と不確実性とのあいだにはBallの仮説というのがあって、インフレ率が高いときに不確実性があがるといわれているが(政府が介入するかもしれないと思われるから)、実際のインフレと$U_t$とのVARモデルを組むと仮説通りのグレンジャー因果性がある。[そのほか、失業率とか、横断でみたインフレ期待の不一致とか、いろんな時系列と比較している。めんどくさいので読み飛ばした]

 [最後に、耐久消費財の消費行動と$U_t$との関連性を分析。これも関心ないのでパス。すいませんね]

 結論。[インフレ期待の研究に対する貢献の話はとばして...] 提案手法はほかの調査データにも使える(未来への期待の設問でも、それ以外でも)。 今回はタイプLとHの2タイプを考えたけど、もっと増やしてもいい。云々。

 なるほどねぇ、こりゃあ面白いな。
 調査で数値を答えてもらったとき、キリのよい回答をどう扱うか、一緒に集計してよいものか、というのは以前ちょっと考えたことがあった(サーヴェイ調査に関わる人にとってはそれほど突飛な問題意識ではないと思う)。混合分布をあてはめたらいいんじゃないか、というところまでは考えたんだけど、そのときは回答自体(連続変数)と「キリのよさ」ダミーの2指標を持つLCAを想定し、いまいちうまくいかなかったので、途中で投げ出してしまった。
 いっぽう著者の戦略は、回答を「主観確率分布の平均を離散変数で表現するプロセス」とみなし、その離散変数のメトリックについて潜在クラスを想定する、というもの。著者は、ある人が所属する潜在クラスは主観確率分布の分散と閾値の比較で決まる、云々と述べてはいるが、その仮定は結局使っていないから、いわば潜在クラスは外生的に決まってしまっているわけだ。つまりこの手法にとっては、主観確率分布の分散なんてほんとはどうでもよくて、単に「回答を5の倍数に丸める人」と「整数に丸める人」を想定しているだけなのだ。なるほどね、頭いいなあ。

 マーケティング・リサーチの文脈だと、たとえばカテゴリ購入金額のような設問に使えればいいなあと思うんだけど、金額はたいてい右に裾を引くので、この論文で提案している正規性仮定はちょっと厳しい。そういう場合はどうしたらいいのかなあ。どなたか頭の良い方、考えて下さらないかしらん。

論文:データ解析(2015-) - 読了:Binder (2015) 回答におけるキリの良い数字に注目して確信度を測定する

rebuilt: 2020年4月20日 18:55
validate this page