elsur.jpn.org >

« 覚え書き: Cross-classifiedデータのランダム二値項目IRTモデルをMplusで表現する | メイン | 読了:「天地創造デザイン部」「かっぱのねね子」「伊豆漫玉ブルース」「メタモルフォーゼの縁側」「こはぜ町ポトガラヒー」「結ばる焼け跡」 »

2019年1月21日 (月)

 統計的因果推論の分野における神々のひとりJudea Pearlの主著 Causality は、そのとてつもない難解さで有名である... 少なくとも私のなかでは有名である。訳書でさえ限りなくギリシャ語に近い(訳者の先生すいません)。もっとも、最近の著書"The Book of Why"はもう少し親しみやすそうなんだけど、あいにく、オフィスの机の脇に聳える必読書たちの山の、二合目あたりに埋もれている。

 Pearlさんが打ち出した重要な概念のひとつにdo(x)オペレータというのがある。説明は端折るけど、まあとにかく、そういうのがあるんです。その意味するところは、なかなか難しい。少なくとも私にとっては、わりかしギリシャ語っぽい。
 このたびPearlさんご本人が、do(x)オペレータの解釈についての短い文章をご発表になった。で、みずから「書いたから読んでね」とメールでアナウンスなさっていた(こういうところ、Pearl先生は実にマメである)。
 えーと、そのメールによれば、RubinとかRobinsとかHeckmanとかHermanとか(←Pearlさんに並ぶ神々たち)の「操作できない変数に因果的特性を帰属させることはできない」という主張は、もはや過去の遺物である、とのこと。
 ご覧ください、相変わらずのこの戦闘性を。ここだけの話、畏れながら私は、Pearlさんを心中ひそかにマッド・ドッグ先生とお呼びしている(これはインドネシアのアクション・スター、ヤヤン・ルヒアンさんの通り名であり、ファンたちの心からの畏敬の念を表しているのです)。

 というわけで、飯のついでに読んでみた。
 そんなに真剣なわけじゃないけど、ちょっと個人的な関心もあって... 以前なにかで、「Aさんが肺がんになった原因のひとつはAさんが喫煙者だったからだ」というのは理解できるけど、「Aさんが前立腺がんになった原因のひとつはAさんが男性であることだ」というのは「原因」という言葉の使い方としておかしい、というような議論を読んで、そうかなあ、とずっと心にひっかかっていた。

Pearl, J. (2019) On the interpretation of do(x). Technical Report R-486, UCLA Cognitive Systems Laboratory.

 いわく。
 この論文では、次の2つの問いに答える。

 問1について。
 モデル$M$に基づき観察研究をやって$Q$を識別できたとしよう。$Q$の使い方には次の3つがある。

 その1, $Q$は、将来利用可能であろう操作可能な介入がもたらす因果効果の理論的限界を表現している。
 $I = \{I_1, \ldots, I_n\}$を操作可能な介入の集合とする。アウトカム$Y$にもたらすそれらの効果を比べたい。これらの介入は、それ自体に直接介入することはできない$X$に効果を与え、それを通じて$Y$に影響するのだとしよう。
 さて、観察研究において$Q = E[Y|do(X=x)]$を識別し推定できたとしよう。このとき、$Q$はいずれかの介入が$Y$にもたらしうる究極的な効果である。つまり、個別の介入$I_i$についてその効果を評価したいという人にとっては、$Q$はすぐに使えるものではないかもしれない。しかし、$X$をより強く制御するために新しい介入方法を開発すべきかどうか決めたいという人にとっては、$Q$は価値を持つ。
 なお、$Q$は$X$を通じた$I_i$の影響の天井なのであって、$I_i$の影響そのものの天井ではないということに注意。$X$を経由しない効果もあるかもしれない。

 その2, $Q$は、現在操作可能な変数の因果的効果に対する制約として働く。
 $I$ → $X$ → $Y$というシンプルな線形モデルを考える。構造係数をそれぞれ$a$, $b$とする。交絡変数はなく、$I$から$Y$へのパスもないものとする。$X$は操作不能とする。
 人々はいう、$X$は操作可能じゃないから、$b$を因果効果と呼ぶのは変だと。そんなこたあない。介入$I$の$Y$に対する平均因果効果$ACE(I)$は、適切な正規化の下で
 $ACE(I) = E[Y|do(I+1)] - E[Y|do(I)] = a \times b$
である。$b$は実現可能で操作可能な介入$I$が持っている理論的特性である。
 非線形システムでもそうだ。$X=f(I, \varepsilon_x), Y = g(X, \varepsilon_y)$とすると
 $E(Y | do(I)) = \sum_x P(x|do(I)) E[Y|do(x)]$
である。$Y$への$X$の理論的効果$E(Y|do(x))$がゼロならば、介入$I$の因果的効果もゼロだ。
 線形システムに戻って、$X$→$Y$に媒介変数とか交絡変数とかがあるとしよう。そのときでも
 $c = E[Y|do(x+1)] - E[Y|do(x)]$
とすれば$ACE(I)=a \times c$である。要するに、$Q = E[Y|do(X=x)]$を識別し推定できれば、$I$の因果的効果も同定できる。
 いや、もちろん$ACE(I)$そのものが推定できるんなら話は別で、その際には$b$や$c$には意味なかろう。でも$I$の開発中には、まだ$I'$しか開発できてないなんてこともあるわけだ。そのとき、$b$や$c$がわかったら大いに役に立つ。もしそれが小さかったら、もう開発なんてやめちゃおうかという話になるじゃないですか。

 その3, $Q$は、操作可能な変数群の因果効果を導出するための補足的な数学的構成物として働く。
 かつてDawid(2000 JASA)はこう述べた。我々は「反事実的な量」なるものを観察したことがない、「反事実的な量」についての我々のモデリング上の想定について、その妥当性を実証的評価できたこともない。反事実という概念に頼ることは哲学的にいって間違っておる、と。
 実証的妥当性についてはそのとおりだ。しかし、実用主義的な実証主義と教条主義的な実証主義を区別する必要がある。前者は、問いが実証的に検証できることを求めるが、その検証の際にどんなツールを使うかについては、便利さと想像力の問題と捉える。後者は、分析に登場するすべての補足的シンボル、すべての中間段階が、実証的な厳密さを持つ用語だけを含むことを求める。極端にいえば、負の値での割り算も認めないってことになるだろう。
 因果推論の文脈で言うと、実用主義者は、個々の測定単位の観察されない反事実(たとえば$Y_x(u)$)を喜んでみとめるだろう。それが集団効果についての実証的に検証可能な推定に役立つならば。Rosenbaum & Rubin(1983)の「潜在的アウトカム」というフレームワークでも、こうやって反事実が使われている。
 話を$Q$に戻そう。人々はいう、$X$が操作不能なとき、$Q$は実証性がないと。百歩譲って、$Q$は因果的効果でもなければ因果的効果の限界でもないとしよう。でも、少なくとも純粋に数学的な構成物ではある。それはそれ自体に経験的内容はないけれど、実証的に意味のある結果を導き出すことを可能にしてくれる構成物である。そういうのって、科学においては決して珍しくない。「複素数」とかね。

 問2について。
 $X$を直接操作することはできなくても、$Q(x) = q(x)$という主張を反証できるような研究計画を組み、データが主張と矛盾しないことを確かめることはできる。つまり、$Q(x) = q(x)$という主張をもたらしたモデリング上の想定から得られる、検証可能な含意を確認すればよい。
 たとえば、$Q(x)$がバックドア基準を通じて識別可能であり、バックドア基準を満たす共変量セットが手に入るから、それらの共変量を調整しよう、とか。
 $I$ → $X$ → $Y$であり、かつ$I$と$Y$に刺さる未知の共変量$U$があるので、あいにく観察研究で検証可能な含意はないが、RCTで$I$をランダム化して$P(y|do(I))$を推定しよう、とか。

 このように、操作不能な変数も因果的効果を持つことができる。それを検証することもできる。その変数が操作可能かどうかなんて、(実験計画はともかく)分析のフェーズでは、気にせんでよろしい。

論文:データ解析(2018-) - 読了: Pearl (2019) わがdo(x)オペレータの正しい解釈

rebuilt: 2020年11月16日 22:53
validate this page