elsur.jpn.org >

« 読了: Ronkko, McIntosh, & Antonakis (2015) PLS-SEMに怒りの鉄拳を | メイン | 読了:「恋は雨上がりのように」「海街ダイアリー」「たそがれたかこ」「忘却のサチコ」「あとかたの街」 »

2016年1月14日 (木)

 たとえば、プロのサッカー選手が来ているシャツにはスポンサーのロゴなんかが入っている。小さなロゴの裏では莫大な金が動いている。
 スポンサー契約を通じて、スポンサーは知名度を向上させたりなんだり、なんらかの価値を得るだろう。ひょっとするとクラブの側も、契約金とは別になんらかの価値を得るかもしれない(ないし、変な企業とスポンサー契約したせいで損をするかもしれない)。
 スポンサー契約はどれだけの価値を生むのか。

 あるスポンサー契約がクラブとスポンサーにもたらす、(契約金以外の)価値の合計について考える。その価値を手に入れたのがクラブ側かスポンサー側かはいったん脇に置いておく。この価値の合計のことを、経済学者っぽく「生産価値」と呼ぶことにする。
 スポンサー契約の生産価値はなにによって決まるか。クラブにもいろいろあって、スポンサー契約が価値をもたらすようなクラブもあれば、そうでもないクラブがあるだろう。スポンサー企業にもいろいろあって、スポンサー契約が価値をもたらすような企業もあれば、そうでもない企業もあるだろう。さらに、クラブとスポンサーの相性というものもあるだろう。
 次のように考えよう。市場$t$におけるクラブ$a$の特徴をベクトル$X_{at}$、スポンサー$i$の特徴をベクトル$Y_{it}$で表す。生産価値は
 $f(a, i, t) = \alpha X_{at} + \beta [X_{at} Y_{it}] + \gamma Y_{it} + \epsilon_{ait}$
 第1項は、いうなればクラブの力。第2項は相性の力で、ブラケットの中身をどうするかはあとで考える。第3項はスポンサーの力。最後は誤差だ。

 ここで知りたいのは、係数$\alpha, \beta, \gamma$だ。これらが推定できれば、スポンサー契約の価値を推定する仕組みが手に入る。クラブとスポンサーの特徴をインプットすれば、スポンサー契約がもたらす価値の推定値がアウトプットされる仕組みだ。素晴らしい。
 そこで、スポンサー契約の事例を片っ端から集めてくる。さらに、クラブとスポンサーの特徴についてのデータを片っ端から集めてくる。クラブとスポンサーの相性に影響しそうなデータも集める。
 たとえば、大チームと大企業を組み合わせると相乗効果が生まれたりするかもしれない。 クラブとスポンサーが地理的に近いところにある方が相性は良いかもしれない。強くて人気がある大チーム、大企業、国際的企業、サッカー向きの業種の企業は力を持ち、スポンサー契約の価値を高めるかもしれない。でもその力も距離次第では損なわれてしまうかもしれない。なんであれ、スポンサー契約を続けていると価値が増すかもしれない。。。という具合に、思いつく仮説を、上の数式にどんどん入れていく。

 さあ、準備はできた。データを上の式に放り込み、係数$\alpha, \beta, \gamma$を推定しよう... と思うところですよね。私もそう思いました。しかし、話はそのようには進まない。これがこのメモを書き始めた理由である。
 なぜか。スポンサー契約がもたらした価値についてのデータがないからだ。クラブの観客数や企業の売上からスポンサー契約の価値を割り出すのは難しい。契約金からどうにか推定できるとしても、そもそもスポンサー契約の金額は企業秘密だ。式の右辺についてはデータがある、しかし左辺についてのデータがないのである。
 さあ、ここからが本題。スポンサー契約がもたらした価値についてのデータなしで、スポンサー契約の価値を推定するモデルをどうやってつくるか。

 サッカークラブは金をくれるスポンサーを求め、スポンサーはロゴをつけてくれるサッカークラブを求めている。クラブたちとスポンサーたちはひとつの市場を形成している。たとえばあるシーズンにおけるある国のクラブたちとスポンサーたち、これがひとつの市場だ。
 いま、市場 $t$ においてクラブ $a$ がスポンサー $i$ と契約したとしよう。スポンサーがクラブに渡す金額を $r_{ait}$、スポンサーが得る価値を$\Delta V (a,i,t)$, クラブが得る価値を$\Delta U(a,i,t)$としよう。スポンサーの利得は
 $\pi^S (a,i,t) = \Delta V(a,i,t) - r_{ait}$
クラブの利得は
 $\pi^C (a,i,t) = \Delta U(a,i,t) + r_{ait}$
この契約によって生まれる価値、すなわち生産価値は
 $f(a,i,t) = \Delta V(a,i,t) + \Delta U(a,i,t)$
である。両者の間でどれだけのカネが動いたか($r_{ait}$)は、もはやどうでもよくなっていることに注意。

 同じ市場$t$において、別のクラブ $b$ が別のスポンサー $j$ と契約したとしよう。このとき、世の中がうまく回っているならば、
 $f(a,i,t) + f(b,j,t) \geq f(a,j,t) + f(b,i,t)$
であるはずである。つまり、2つの契約から生まれる生産価値の合計は、仮にクラブとスポンサーのマッチングを入れ替えたときに生まれる生産価値の合計と同じ、ないしそれよりもマシであるはずだ。マッチング理論ではこれを「局所生産最大化条件」と呼ぶのだそうである。

 市場$t$においてなされたスポンサー契約の集合から、2ペア$\{a,b,i,j\}$を取り出すすべての取り出し方について考える。契約が3つあったら3x2=6通り、k個あったらk(k-1)通りあるんでしょうね。で、すべての取り出し方について、局所生産最大化条件が満たされていたら1点、そうでなかったら0点とカウントする。このカウントを合計しよう。
 さらに、市場の数が$H$個あるとして、それらの市場を通じて、カウント合計の平均を求めよう。
$Q_H(f) = \frac{1}{H} \sum_{t \in H} \sum_{\{a,b,i,j\} \in A_t} 1[f(a,i,t) + f(b,j,t) \geq f(a,j,t) + f(b,i,t)]$
 $1[\cdot]$は、カッコ内の不等式が成立しているときに1, そうでないときに0を返す関数である。上記数式、原文にはどうもミスプリがありそうなので、勝手に表記を変えている。誤解していないといいんだけど。

 この関数を$f$について最大化した解を、スポンサー契約市場における均衡状態と捉えることができるのだそうだ。
 つまり、もし世の中がうまく回って回って回り続けていれば、いずれはスポンサー契約市場 がそうなるであろう姿。一旦世の中がそうなってしまった暁には、どの(合理的な)クラブもスポンサーもそこから抜け出すことができない、そんな姿。それがわかるというわけだ。まじですか。
 ということは、もし世の中がこれまでうまく回って回って回り続けているならば、スポンサー契約市場は均衡状態に陥っているはずだ。ということは、スポンサー契約から生まれる価値の関数 $f$ は、上の$Q_H(f)$を最大化するような関数であるはずだ。ということは、実際のスポンサー契約、ならびにクラブとスポンサーの特徴についてのデータの下で、$Q_H(f)$を最大化する$f$を求めれば、それがこの世の中における、スポンサー契約の価値を求める関数となるはずだ。
 ... というロジックなのではないかと思う。えーと、こういう理解であっているんでしょうか。こういう考え方そのものに、私、 いささか戸惑ってしまうんですが...

 このスコア関数$Q_H(f)$にさきほどの$f(a, i, t)$の式を放り込もう。ここで面白いのは、$Q_H(f)$の中身の不等式をよく見ると、$\alpha X_{at}, \alpha X_{bt}, \gamma Y_{it}, \gamma Y_{jt}$がひとつづつ出てくる、という点だ。つまりこれらは無視してしまってよい。問題はクラブとスポンサーの相性の力 $\beta [X_{at} Y_{it}]$ だけなのだ。おおお、なるほど。
 ともあれこのようにして、スポンサー契約、クラブ、スポンサーについての十分なデータがあれば、スポンサー契約がもたらす価値を推定するモデルを手に入れることができる。
 イギリスのサッカークラブのスポンサー契約のデータをつかって推定したところ、クラブとスポンサー企業は規模が釣り合っているときに相性がいいとか、クラブ本拠地と企業の本社所在地が地図上で近いほうが相性がいいとか、そういったことがわかった由。

 以上、Yang & Goldfarb (2015, J. Marketing Research) からメモ。
 実は上記は、私には途方もなく難しいこの論文のごく最初のほうに出てくる話で、ここから論文は「酒やギャンブルに関連する企業がサッカーのスポンサーになるのを禁止したら何が起きるか」という分析へと進んでいくのだが、分析の仕組みというか建付けの部分で途方に暮れてしまった。頭を冷やすために、論文のロジックを組み立て直し、私にも理解できるくらいに平易な筋立てに落として、メモにしてみた次第である。

 均衡という概念に基づいたこういう分析が、ビジネス・ リサーチやデータ解析でもこれから重要になってくるのか、そうでもないのか、そういう大きな話は私にはよくわからない。だから、手探りで勉強することにどれだけの投資対効果があるのかはよくわからないんだけど、 とにかくその、読むたびに途方に暮れてしまうのである。なんというかその... 現象を理解するための分析に、いつのまにか規範的言明が入ってくる感じ、というか...
 もっとも、ふつうの統計的分析だって、インプットは常に仮定とデータだ。上の場合でいうと、仮にスポンサー契約の価値のデータが手に入っていたら回帰分析でモデルを推定できただろうけど、でもそのときだって、きっと誤差項の分布についてなんらかの仮定を置くだろう。上の分析ではその確率的な仮定の代わりに「スポンサー契約市場が均衡状態にある」というゲーム理論的な仮定を置いただけだ、ということなのかもしれない。ううううむ。。。

雑記:データ解析 - メモ:スポーツ・スポンサー契約がもたらす価値をどうやって推定するか:マッチング理論の巻