elsur.jpn.org >

« 読了:「月と篝火」「氷」 | メイン | 読了:Yang & Goldfarb (2015) マッチング理論でみたスポーツチームのスポンサー契約 (または: 酒メーカーのロゴを選手のシャツから締め出したら困るサッカークラブはどこだ?) »

2016年1月19日 (火)

Green, P.E., Krieger, A.M. (1988) Choice Rules and Sensitivity Analysis in Conjoint Simulators. Journal of the Academy of Marketing Science, 16(1), 114-127.
 仕事の都合で読んだ。なんで四半世紀前の論文を読まねばならんのだ、とも思うのだけれど、知りたいことが書いてある本が見つからなくて。探し方が悪いのだろうか...

 コンジョイント分析で属性の部分効用を推定し、かつ選択集合となる製品群を定義できたとして、そこから消費者の選択確率を求めるとき、方法がいろいろあるけどどれがいいのか、という話。
 おかしい... こうやって書いてみると、どうみてもその辺の参考書に載っているべき話だ。探し方が悪いんだよな、やっぱり...

 著者らいわく。
 歴史的にいうと、初期のコンジョイント分析では対象者レベルでの最大効用ルールを使うのが一般的だった。個々の対象者は自分から見て効用がもっとも高い製品を確率1で選ぶ、と考える。いまでもこれが主流。
 最近では効用シェアルールも使われている。効用のベクトルを選択確率のベクトルに変換する。良く使われているはBradley-Terry-Luceモデル(BTL)モデルとロジット・モデル。結果はだいたい同じ。どちらも"majority fallacy"という問題を抱えている。すなわち、異質性が高い市場において、効用の平均が高いのに誰にとってもfirst choiceでないという製品が出現するという問題である[←ちょっと待って先生...それがなぜ問題なの? 誰にとっても二番手の製品が市場全体を通してシェア最大になる、ってことは実際にあり得るんじゃないですか? どうも文脈がつかめない]
 ほかに、EBA, 辞書型、probit型、tobit型、conjunctive/disjunctive型などのルールが提案されているが、推定が難しいしあんまし使われていないので、ここでは扱わない。[←知らなかった... コンジョイント分析の文脈でも、かつては非補償的選択を取り入れるという提案があったのか]

 各ルールについての説明。
 いま、部分効用は対象者内で最小0, 最大1に規準化されているとしよう[←おっと、合計0じゃないのね。BTLルールの説明をしたいからだろう]。製品$1,2,\ldots,J$の効用$s_1, s_2, \ldots,s_J$を選択確率に変換する関数について考える。

 BTLルールは効用に定数を加えると確率が変わる。ロジットルールは効用を定数倍すると確率が変わる。
 向き不向きについていうと、散発的に買う製品の異質性の高い市場では最大効用ルールが良い。反復購買する製品に市場ではBTLなりロジットなりが良い。

 後半は感度分析のすすめ。候補集合をちょっぴり変えてシェアの変化をみるといいよ、という話[←推定量に対するパラメータの感度分析というような話じゃなくて、もっと実質的な話だ]。

とかなんとか。[←牧歌的な話で実に心暖まるが、いま心暖めてもしょうがないので、適当に読み飛ばした]

 効用から確率を求める方法については、もっと新しい方法もあるので(Sawtooth社のrandomized first choiceとか)、1988年の論文を読んでもしょうがないんだけどね、実のところ。
 BTLモデルとロジットモデルでは、その背後にある効用についての理論が違うのではないかと思う。その辺の事情が知りたくて手に取ったんだけど、やっぱりよくわからなかった。なにを読めばいいんだろう? もちろん、難しい数式が出てこない範囲でお願いしたい... 修士のときに読まされたCoombs-Dawes-Tverskyの数理心理学の教科書が、いまだトラウマになっているのである。

論文:データ解析 - 読了:Green & Krieger (1988) コンジョイント分析で推定した効用から市場シェアを推定する方法 in 1988