« 覚え書き:価格調査の方法 | メイン | 読了:Abdi (2010) PLS回帰への招待 in 2010 »
2018年5月 5日 (土)
Indahl, U.G, Liland, K.H., Naes, T. (2008) Canonical partial least squares: A unified PLS approach to classification and regression problems. J. Chemometrics, 23, 495-504.
PLS回帰と正準相関分析ってどう違うのだろうか... と検索していて見つけた論文。Rのplsパッケージにはcanonical powered PLSという手法が載っていて、その参照文献のひとつになっている。あ、第二著者のLilindさんという人はplsパッケージの作者のひとりだ。
掲載誌が掲載誌だけに(ケモメトリクスはPLS回帰の本場)、PLS回帰そのものについての知識を前提として、新手法を提案している論文。
いわく。
本論文ではPLS2 (多重反応PLSのことらしい) よりももっと自然なやりかたで、PLSによる判別分析を提供します。その際、すでに提案されているpowered PLS(PPLS)という方法を使います。
それではご紹介しましょう。じゃじゃーん。その名も正準PLS(CPLS)。PLSと正準相関分析(CCA)をあわせた手法です!
背景。
予測子$n \times p$行列をX, 反応の$n \times q$行列を$Y$とする。
$Y$が連続変数である場合に、$p$次元単位ベクトル$u$, $q$次元単位ベクトル$v$について
$f_1 (u, v) = u^t X^t Y v$
を最大化する手法をPLS2という。
これはSVDで解ける。$X, Y$を中心化しておいて、$W = X^t Y$をの一階SVD近似を$W_{(1)} = s a b^t$とする。このとき、$cov(Xu, Yv) = (1/n) f_1(u, v)$となる。[←あれれ...どこかに誤植があるはずだ。$cov(Xa, Yb) = (1/n) f_1 (u,v)$の間違い??]
$Y$が$n \times g$のダミー行列である場合、ちょっとやり方を変えたほうがよい。$W = X^t Y$のSVDから特異ベクトルを得るのは、
$B_Q = n \bar{X}_g^t Q \bar{X}_g$
のSVDをするのと同じことになる。ここで$\bar{X}_g = (Y^t Y)^{-1} Y^t X$、すなわち$g \times p$の群平均行列。$Q$は重みを表す対角行列で、対角要素は群サイズ$n_k^2$に比例し合計1となる。それよか、
$f_2(u, v) = u^t X^t Y (Y^t Y)^{(1/2)} = u^t W_\Delta v$
を最大化することを考えたほうがいい。なぜなら、$W_\Delta$のSVDから特異ベクトルを得るのは
$B_P = n \bar{X}_g^t $P$ \bar{X}_g$
のSVDと同じことになり、ここでPの対角要素は$n_k$に比例し合計1だ。これをPLS-DAという。[はああ? どういうこと? 狐につままれた気分]
今度はCCA。
PLS2では$cov(Xu, Yv)$の最大化を行ったわけだが、今度は$corr(Xu, Yv)$の最大化を行う。これは結局... [以下、説明が続くけどパス]
で、ここからが新手法CPLSの説明なんだけど、哀しいかな、理解できなかった。なんでも、$corr(Xu, Yv)$じゃなくて$corr(X X^t Y c, Yd)$を最大化するのだそうだ。えっ、なぜ???
説明が書いてあるんだけど、これがもう全然理解できない... 涙を呑んで諦めます。今回はご縁がなかったということで。
えーと、とにかく、PLSやPLS-DAと比べて、よりアグレッシブに$Y$を予測し、PLS因子数は少なくなるんだそうだ。
。。。いやいや。深刻に考えるのはよそう。ある日ふと読み返したら、意外にスルスルと理解できるかもしれない。あるいは加齢によってこの分析手法への関心ごと消え失せ、理解できなくてもなんら痛痒を感じなくなるかもしれない。いいよ、もう、どうだって。
論文:データ解析(2018-) - 読了:Indahl, Liland, Naes(2008) 正準PLS回帰分析のご提案 (おまえらにわかるかどうかは別にして)