elsur.jpn.org >

« 読了:Jennings & Wlezien. (2018) 世界の選挙調査は危機にあるか?→意外にそうでもない | メイン | 読了:Carvalho (2016) 当たり外れがプロパー・スコアリング・ルールで決まるクジを報酬にすれば参加者のリスク選好がどうであれ真実申告メカニズムが得られるというのは本当か »

2018年5月 3日 (木)

Sandroni, A., Shmaya, E. (2013) Eliciting beliefs by paying in chance. Economic Theory Bulletin, 1, 33-37.
 昨年のJ. Prediction Marketsにこの論文についてのコメントが載っていて、どうやらベイジアン自白剤のことが引き合いに出されているらしいので、読んでみた。
 雑誌名からして素人が読むべきものではないのかもしれないけれど、たったの5pだし、数式も少ないので、試しに目を通してみた次第。どうせ何についても専門家じゃないんだから、いいじゃないですか、何を読んだって。
 google scholarによる被引用回数は... 6件。渋い。

 いわく。
 専門家に自分の主観確率を誠実に報告させるインセンティブを求める方法としてプロパー・スコアリング・ルールがある。そういうのは多くの場合、専門家がリスク中立であること(ないしリスク選好が既知であること)を仮定している。本論文では非常に単純な原理を述べる。この原理を使えば、専門家の選好が既知であるという想定をdisposeすることができる。

 これから出来事$E$が起きるかもしれないし起きないかもしれない。ボブは$E$についての主観確率を持っている。Bobの主観確率をどうやって引き出すか。
 ボブが確率$\hat{p}$を申告したとして、$E$が起きたら金銭報酬 $S(\hat{p}, 1)$, 起きなかったら$S(\hat{p}, 0)$を支払うとしよう。ここで
 $S(\hat{p}, 1) = 2 - (1-\hat{p})^2$
 $S(\hat{p}, 0) = 2 - (\hat{p})^2$
とする支払スキーマ$S$をBrierスコアという。これはプロパー・スコアリング・ルールの例である。ペイオフの期待値
 $p S(\hat{p}, 1) + (1-p) S(\hat{p}, 0)$
を最大化するのは$\hat{p} = p$なので、ボブがリスク中立的なら、ボブは自分の主観確率を申告する。

 問題は、ボブのリスク選好がわからない場合、つまり$S(\hat{p}, 1), S(\hat{p}, 0)$がボブにとっての効用なのかどうかわからない場合である。
 ひとつの路線は、別の実験をやってボブの選好を調べるというものである。いっぽう、Karni(2009)は別の路線を考えた。以下で説明しよう。なお、より包括的な定式化としてLambert(2011)がある。
 金銭報酬$x, y$($x > y$)を使った次の2つのクジがあるとしよう。
 A: 確率$\mu$で$x$ドルもらえ、確率$1-\mu$で$y$ドルもらえるクジ。
 B: 確率$\mu'$で$x$ドルもらえ、確率$1-\mu'$で$y$ドルもらえるクジ。
ボブがBよりAを選好するのは、$\mu > \mu'$のとき、そのときに限ると仮定する。この仮定をprobabilistic sophistication and dominanceという。
 さて、次のランダム・スコアリング・ルールを考える。$P(\hat{p},1) = S(\hat{p},1)/2, P(\hat{p},0) = S(\hat{p},0)/2$とし、$E$が起きたら「確率$P(\hat{p},1)$で$x$ドルもらえ、確率$1-P(\hat{p},1)$で$y$ドルもらえるクジ」、$E$が起きなかったら「確率$P(\hat{p},0)$で$x$ドルもらえ、確率$1-P(\hat{p},0)$で$y$ドルもらえるクジ」を渡すのである。2で割っているのは単に確率を0~1の範囲に収めたいから。
 このとき、ボブが$x$を得る確率は
 $\{p S(\hat{p}, 1) + (1-p) S(\hat{p}, 0)\}/2$
なので、$S$がプロパーであれば、$p$を申告するのが最適となる。これはボブのリスクへの態度に関わらず成り立つ。
 [うううううう... わからないいいい... なぜそういえるの...??? リスク中立でないってことは、$S(\hat{p}, 1), S(\hat{p}, 0)$が効用でなくて、$U(S,p)$というような形の効用関数が別にあるってことだよね? それがどういう形であれ、sophisticationとdominanceという条件を満たしていれば、$\hat{p}=p$が効用を最大化するといえる、ってこと??? それって自明なの? どうも話の肝になるところが理解できていないみたいだ...]

 上の例は、支払額を偶然で決めることによって信念を引き出すという原理を示している。基本手続きは以下の通り。(1)なんらかのプロパー・スコアを基準化して、スコアが0~1に入るようにする。(2)この基準化されたプロパー・スコアを確率とみなし、この確率で高いほうの金銭報酬$x$を渡す。要するに、スコアが高いとき、高い報酬がもらえる確率が高くなるわけである。

 この原理は、多エージェントのゲーム理論的セッティングにも使える。たとえばPrelec(2004)のベイジアン自白剤について考えよう。[以下、ややこしいので全訳する]

Prelecは、それぞれの専門家の意見は共通の分布を持つある確率変数の実現値だと想定した。彼は次のようなベイジアン・ゲームを設計した。そのゲームにおいて、専門家$i$の行為空間$A_i$は、yesかnoかを述べること、そしてyesと答えた専門家の割合を予測することである。プレイヤー$i$の純戦略は、彼の実際の意見(yesないしno)を行為空間$A_i$にマップするものである。プレイヤー$i$のペイオフは、彼が構築する具体的な効用関数
 $U_i: \prod_k A_k \rightarrow R$
で与えられる。彼の論文のキーポイントは、全ての専門家たちが自分の意見を誠実に申告するナッシュ均衡が存在するというものである。
 Brierスコアの場合のように、$U_i$の下でのペイオフが金銭を単位として与えられている場合、そこではリスク中立性が仮定されている。ペイオフが効用であると仮定されている場合、そこでは専門家のリスク態度が既知だと仮定されている。しかし、いま線形の狭義単調増加関数$\tau$があり、全てのプレイヤー$i$、すべての行為プロフィール$a \in \prod_l A_k$について、$\tau(U_i(a))$が0と1の間だとしよう。行為プロフィールが$a \in \prod_l A_k$であるゲームにおいて、プレイヤー$i$が確率$\tau(U_i(a))$で金銭報酬$x$を承けとり、確率$1-\tau(U_i(a))$で金銭報酬$y$を受け取るとする(ただし$x > y$)。$x$と$y$のどちらになるかを決めるランダム化は、本質的に、それぞれのエージェントからもそれぞれの行為プロフィールからも独立である。Prelecのゲームにおける真実申告ナッシュ均衡は、この修正されたゲームにおいてもやはりナッシュ均衡である。このことは、probablistic sophistication and dominanceの下で、専門家のリスク態度と無関係に成立する。

 ...忘れちゃったんだけど、ベイジアン自白剤ってプレイヤーのリスク中立性を仮定しているんだったっけか。あとで調べておこう。
 えーと、要するに、報酬をプロパー・スコアリング・ルールで与えたときは、参加者がリスク中立でないと真実申告メカニズムにはならないんだけど、報酬を「プロパー・スコアリング・ルールに基づく確率」で決めれば、リスク選好がどうであれ真実申告メカニズムが作れるんだよ、という話なんだと思う。で、それはベイジアン自白剤にもあてはまるんだよ、ということなんだと思う。そうなんすか。
 ときに、報酬を確率的に決めるというのはBDMメカニズムもそうなんだけど、どういう関係にあるんだろうか。

論文:予測市場 - 読了:Sandroni & Shmaya (2013) 当たり外れがプロパー・スコアリング・ルールで決まるクジを報酬とせよ、さすれば参加者のリスク選好がどうであれ君は真実申告メカニズムを得るだろう

rebuilt: 2020年11月16日 22:54
validate this page