elsur.jpn.org >

« 読了:Rothschild & Wolfers (2012) 「誰に投票しますか」と訊くより「誰が勝つと思いますか」と訊いたほうが良いのはなぜか、モデルで説明しよう | メイン | まず選手をランダムに選んでそこから優秀な選手を選抜するより、最初から同数の選手をランダムに選抜したほうが、集団の成績は高くなる、ということが必ずあるという証明 (Hong & Page, 2014) »

2018年10月30日 (火)

 仕事の都合で、統計学の一般的な知識についてのご相談を頂くことがある。そうしたご相談の、そうだなあ...4割か5割くらいは、南風原「心理統計学の基礎」を熟読すれば答えられる内容である。いうなれば、私の日々の仕事の一部は、南風原本を適宜わかりやすく言い換えることに過ぎない。嗚呼、哀れな人生。
 しかし、ここにふたつの問題がある。(1)ご相談を受けてから熟読している時間はない。(2)前もって熟読していたとしても、覚えていられるとは限らない。
 幸か不幸か、私は人生においてヒマな時期が結構長かったので、(1)の問題は一応クリアしているんだけど(つまり、2002年の刊行時にかなり真剣に読んだんだけど)、(2)の問題が壁となって立ちはだかる。特に最近は、この壁がすごく、すごーく、ものすごーく高い。

 このたび都合であれこれ説明を書いていて、ああこの話って、あの本の8章、部分相関係数とか偏相関係数とかからはじめてTypeIII平方和に至るくだりの、下手な書き換えに過ぎないなあ... と気が付いた。
 というわけで、せめてもの忘備録として、8章の内容をメモしておきます。
 事例を剥ぎ取って要点のみメモする。なので、メモだけをみると、いっけんすごく難しい話のようにみえるだろうと思う。
 南風原先生の略記法とはちがい、変数$X$の標準偏差を$s[X]$, $X,Y$の相関係数を$r[X,Y]$と略記する。

8.1 部分相関係数と偏相関係数
 ここに変数$y, x_1, x_2$がある。$x_2$と$y$の間には、その両変数と$x_1$との相関関係だけでは説明できないような独自の関係があるか。

 $x_2$を、$x_1$によって完全に予測可能な成分と、$x_1$と完全に無相関な成分$x_2|x_1$とにわけ、$x_2|x_1$と$y$との相関
 $\displaystyle r[y, (x_2|x_1)] = \frac{r[y, x_2] - r[y, x_1] r[x_1,x_2] }{ \sqrt{1-r^2[x_1, x_2]} }$ [8.1]
を調べよう。これを部分相関係数part correlation coefficient, ないし片偏相関係数(半偏相関係数) semipartial correlation coefficentという。

 部分相関係数においては、$x_2$からは$x_1$の影響を除いてあるが、$y$に関してはもとのままである。そこで、$y$から$x_1$の影響を除いた$y|x_1$と、$x_2|x_1$との相関
 $\displaystyle r [(y|x_1), (x_2|x_1)] = \frac{r[y, x_2] - r[y, x_1] r[x_1,x_2]}{\sqrt{1-r^2[y, x_1]} \sqrt{1-r^2[x_1, x_2]}}$ [8.2]
も調べよう。これを偏相関係数partial correlation coefficientという。

 $x_1$から$x_2$と$y$にパスが刺さるパス図で考えると、部分相関係数$r[y, (x_2|x_1)]$は「$y$と、$x_2$の残差との相関」であり、偏相関係数$r [(y|x_1), (x_2|x_1)]$とは「$y$の残差と、$x_2$の残差との相関」である。

 部分相関係数と偏相関係数の間には次の関係がある。
 $\displaystyle r [(y|x_1), (x_2|x_1)] = \frac{ r [(y|x_1), (x_2|x_1)] }{ \sqrt{1-r^2[y, x_1]} }$ [8.3]

8.2 偏回帰係数とその解釈
 ここで唐突におさらいしますが、一般に、散布図の横軸が$X$、縦軸が$Y$のとき、回帰係数は
 $b[X,Y] = r[X,Y] \times (s[Y] / s[X])$ [3.13]
$X$で$Y$を予測したときの予測の標準誤差は
 $s[e] = s[Y] \sqrt{1-r^2[X,Y]}$ [3.25]
である。

 本題に戻って...
 横軸に$x_2|x_1$、縦軸に$y$をとった散布図に、回帰直線をあてはめてみよう。

 以上により、この散布図にあてはめた回帰直線の傾き
 $b[ y, (x_2|x_1) ]$
は、[3.13]より
 $\displaystyle = r[ y, (x_2|x_1)] \frac{s[y]}{s[x_2|x_1]}$
[8.1],[8.4] を代入して
 $\displaystyle = \frac{r[y, x_2] - r[y, x_1] r[x_1,x_2]}{\sqrt{1-r^2[x_1, x_2]}} \times \frac{ s[y] }{ s[x_2] \sqrt{1-r^2[x_1, x_2]} }$
 $\displaystyle = \frac{r[y, x_2] - r[y, x_1] r[x_1,x_2]}{ 1-r^2[x_1, x_2] } \times \frac{ s[y] }{ s[x_2] }$ [8.5]
 これを偏回帰係数 partial regression coefficientと呼ぶ。なお、横軸に$x_2|x_1$、縦軸に$y|x_1$をとっても、同じ偏回帰係数が得られる。

 [8.5]の第2項は標準偏差の比である。仮に$x_2$と$y$をまず標準偏差1に標準化してから求めたなら、この項は消えて、
 $\displaystyle b^{*}[ y, (x_2|x_1) ] = \frac{r[y, x_2] - r[y, x_1] r[x_1,x_2]}{ 1-r^2[x_1, x_2] }$ [8.7]
これを標準偏回帰係数standardized partial regression coeffientという。

 部分相関係数[8.1], 偏相関係数[8.2], 標準偏回帰係数[8.7]は分母のみ異なるという点に注目すべし。

8.3 重回帰モデル
 ここからは、
 $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ [8.10]
という線形モデルを考える。なお、推測に際しては
 $\epsilon | x_1, x_2 \sim N(0, \sigma^2_\epsilon)$
という確率モデルを想定する。

 ここから、
 $E[y | x_1, x_2] = \alpha + \beta_1 x_1 + \beta_2 x_2$
である。これを回帰平面ないし予測平面と呼ぶ。

 母数$\alpha, \beta_1, \beta_2$の推定量を$a, b_1, b_2$とすると
 $\hat{y} = a + b_1 x_1 + b_2 x_2$
 残差 $e = y - \hat{y}$の二乗和 $Q = \sum_i^N e_i^2$を最小化する推定量は
 $\displaystyle b_1 = \frac{r[y,x_1] - r[y, x_2] r[x_1,x_2]}{1-r^2[x_1,x_2]} \times \frac{s[y]}{s[x_1]}$ [8.15]
 $\displaystyle b_2 = \frac{r[y,x_2] - r[y, x_1] r[x_1,x_2]}{1-r^2[x_1,x_2]} \times \frac{s[y]}{s[x_2]}$ [8.16]
 $\displaystyle a = \hat{y} - b_1 \bar{x}_1 - b_2 \bar{x}_2$ [8.17]
なお、[8.16]は[8.5]と同じである。

 $y$と$\hat{y}$の相関係数は
 $\displaystyle R = \sqrt{ \frac{r^2[y,x_1] + r^2[y,x_2] - 2 r[y,x_1] r[y,x_2] r[x_1,x_2]}{1-r^2[x_1,x_2]} }$ [8.20]
これを重相関係数multiple correlation coefficientという。重相関係数は、独立変数の1次式で与えられる変数と従属変数との相関のうち最大のものである。

8.4 重回帰分析の仕組み
 平均0に中心化したデータを$\mathbf{y}, \mathbf{x_1}, \mathbf{x_2}$とする。
 予測値ベクトルは
 $\hat{\mathbf{y}} = b_1 \mathbf{x_1} + b_2 \mathbf{x_2}$
である。これは$\mathbf{x_1}, \mathbf{x_2}$によって張られた平面上のベクトルである。
 その先端から$\mathbf{y}$に向かうベクトルが残差ベクトル$\mathbf{e}$である。最小二乗法では、$\mathbf{e}$の長さを最小にするように$\hat{\mathbf{y}}$を決める。つまり、$\mathbf{y}$から平面に垂線をおろし、その足を$\hat{\mathbf{y}}$の先端に決めているわけである。
 重相関係数$R$とは、$\mathbf{y}$と$\hat{\mathbf{y}}$のなす角度のコサインである。これを最大にするように$\hat{\mathbf{y}}$を決めている、といってもよい。

 重相関係数$R$はどういうときに大きくなるか。
 まず、単独で高い相関を持つ独立変数があれば大きくなる。これは、$\mathbf{y}$が$\mathbf{x_1}$に近づくにつれて平面も近づいていく、と理解できる。
 独立変数間の相関が-1に近いときにも大きくなる(「0に近いとき」でない点に注意)。これは、$\mathbf{x_1}, \mathbf{x_2}$と$\mathbf{y}$との角度を保ったまま$\mathbf{x_1}$と$\mathbf{x_2}$の角度を拡げると、平面が$\mathbf{y}$に近づいていく、と理解できる(90度に拡げた瞬間なにか特別なことが起きるわけでない点に注意)。
 
 $\mathbf{x_1}$と$\mathbf{x_2}$の相関が高いとき、$\hat{\mathbf{y}}$が少し変動するだけで$b_1, b_2$が大きく変動する。
 このことは、独立変数間に高い相関があると、サンプリングによる偏回帰係数の変動が大きくなることを意味している。これを多重共線性という
 偏回帰係数の標準誤差は
 $\sigma[b_1] = \sigma[e] / (\sqrt{N} s[x_1] \sqrt{1-r^2[x_1,x_2]})$ [8.23]
 $\sigma[b_2] = \sigma[e] / (\sqrt{N} s[x_2] \sqrt{1-r^2[x_1,x_2]})$ [8.24]
一般化すると
 $\sigma[b_j] = \sigma[e] / \left( \sqrt{N} s[x_j] \sqrt{1-R^2[x_j, x_1,\cdots (x_j) \cdots x_p]}) \right)$ [8.25]
である($R^2[x_j, x_1,\cdots (x_j) \cdots x_p]$は$x_j$とそれ以外のすべてとの重相関係数)。他の変数との相関が高いほど大きくなるのがわかる。

 最後に、偏回帰係数を幾何学的に説明しよう。[←ここがこの本の難関のひとつだと思うんですよね...」

 8.2節にいわく、偏回帰係数とは、横軸に$x_2|x_1$、縦軸に$y$をとった散布図の回帰係数である。また8.3節にいわく、偏回帰係数とは、$x_1, x_2$で$y$を予測するときの係数である。

 $\mathbf{x_1}, \mathbf{x_2}$で張られた平面を考えよう。$\mathbf{x_2|x_1}$とは、$\mathbf{x_2}$の先端から$\mathbf{x_1}$に下した垂線を逆向きにしたベクトルである。当然、平面に乗っている。話を簡単にするため、こいつをずずずっと平行移動して、始点を原点に揃えよう。$\mathbf{x_2|x_1}$は$\mathbf{x_1}$と原点で直交しているわけね。

 こいつで$\mathbf{y}$を予測しよう。上空に斜めに伸びている$\mathbf{y}$の先端から、平面に垂線を降ろすんじゃなくて、$\mathbf{x_2|x_1}$に向けて垂線を降ろす(上空から斜めに落ちてくる線になる)。その足が、ベクトル$b_2(\mathbf{x_2|x_1})$の先端。これが8.2節の説明である。
 今度は、$\mathbf{y}$の先端から平面に垂線を降ろそう。その足の位置から、$\mathbf{x_1}$と平行に(つまり$\mathbf{x_2|x_1}$と垂直に)$\mathbf{x_2}$に移動し、ぶつかったところが、偏回帰係数$\times \mathbf{x_2}$の先端である。これが8.3節の説明。図に書いてみると、なるほど、それは$b_2\mathbf{x_2}$となる。

 なお、部分相関係数$r[y, (x_2|x_1)]$とは、$\mathbf{y}$(上空に斜めに伸びている)と$\mathbf{x_2|x_1}$(さっき地表に引いた新しい線)がなす角度のコサインである。
 $\mathbf{y|x_1}$とは、$\mathbf{y}$の先端から$\mathbf{x_1}$に斜めに降ろした垂線を逆向きにしたベクトルである。これを原点へと平行移動すると、それは、$\mathbf{x_2|x_1}$(さっき地表に引いた新しい線)の原点を押さえて先端を持ち、$\mathbf{x_1}$との角度を変えないようにまっすぐに引き上げ、$\mathbf{y}$の先端の高さまで伸ばした新しい棒となる。偏相関係数$r[(y|x_1), (x_2|x_1)]$とは、この引き上げ角度がなすコサインである。

5. 平方和の分割と重相関係数の検定
 $\mathbf{y}, \hat{\mathbf{y}}, \mathbf{e}$は直角三角形をなしているんだから、
 $||\mathbf{y}||^2 = ||\hat{\mathbf{y}}||^2 + ||\mathbf{e}||^2 $ [8.26]
ベクトルの長さは平方和だから
 $SS[y] = SS[\hat{y}] + SS[e]$ [8.27]
分散説明率は
 $SS[\hat{y}] / SS[y] = ||\hat{\mathbf{y}}||^2 / ||\mathbf{y}||^2 = cos^2 \theta[y,\hat{y}] = R^2$ [8.28]
[8.27] より
 $R^2 = 1 - SS[e] / SS[y]$ [8.29]
である。

 $SS[y]$の自由度は$N-1$。残差平方和$SS[e]$の自由度は平方の数から母数の数を引いたもので、ここで母数は$p+1$だから(切片がはいる)、自由度は$N-p-1$。よって$SS[\hat{y}]$の自由度は$p$である。

 予測の誤差分散と標準誤差はそれぞれ
 $s^2[e] = SS[e] / N = SS[y] (1-R^2)/N = s^2[y] (1-R^2)$ [8.32]
 $s[e] = s[y] \sqrt{(1-R^2)}$ [8.33]
だが、$\sigma[e]$の推定量としては(そして予測の標準誤差としても)、自由度$N-p-1$で割った不偏推定量
 $s^{'}[e] = s[y] \sqrt{N/(N-p-1)}$ [8.34]
を使うことが多い。同様に、$\sigma^2[y]$の推定量としても$s^{'2}[y] = SS[y] / (N-1)$を使うことが多い。[8.29]を書き換えると
 $R^2_{adj} = 1 - \sqrt{\frac{N-1}{N-p-1}}(1-R^2)$
これが自由度調整済み決定係数である。$R^2$が$p$の増大につれて過大になるのを修正しているわけだ。

 重相関係数がゼロであるという帰無仮説の下で、
 $F = \frac{SS[\hat{y}]/p}{SS[e]/(N-p-1)}$ [8.36]
は自由度$p, N-p-1$のF分布に従う。[8.28]で書き換えると
 $F = \frac{R^2/p}{(1-R^2)/(N-p-1)}$ [8.36]
である。

6. 個々の独立変数の寄与の評価
 [8.20]から$r^2[y,x_1]$を引くと
 $\displaystyle R^2 - r^2[y, x_1] = \frac{(r[y,x_2]-r[y,x_1]r[x_1,x_2])^2}{1-r^2[x_1,x_2]}$
となる。よくみると、これは[8.1]の部分相関係数$r[y, (x_2|x_1)]$の二乗である。
 これは独立変数の数に限らず成り立つ。つまり、$q$個[原文では$p_1$個]の独立変数からなるモデルに変数を1個以上加えて$p$個にした時の決定変数の増分は、部分相関係数の二乗になる。これを
 $R^2[y,x_1\cdots x_p] - R^2[y,x_1\cdots x_q] = r^2[y, (x_p|x_1\cdots x_q)]$
と書こう。

 追加した$p-q$個の偏回帰係数について、帰無仮説
 $H_0: \beta[x_{q+1}] = \cdots = \beta[x_p] = 0$
を検定することができる。検定統計量
 $\displaystyle F = \frac{(R^2[y, x_1\cdots x_p]-R^2[y,x_1\cdots x_q])/(p-q)}{(1-R^2[y, x_1\cdots x_p])/(N-p-1)}$ [8.43]
が帰無仮説の下で自由度$p-q, N-p-1$のF分布に従う。

 上で述べた独立変数の寄与の評価は、独立変数の投入順で変わってくる。
 投入順を決め、各ステップにおける$R^2$の増分に全平方和$SS[y]$を掛けて得られる平方和をタイプIの平方和という。
 投入順は決められないことが多い。そこで、それぞれの独立変数を最後に投入したと想定し、部分相関係数の二乗に全平方和$SS[y]$を掛ける。これをタイプIIIの平方和という。

 [8.25]で示した偏回帰係数の標準誤差$\sigma[b_j]$の、分子の$\sigma[e]$を$s^{'}[e]$で置き換えて$s[b_j]$とし、これと偏回帰係数$b_j$を比較した $t = b_j / s[b_j]$ は、$H_0: \beta_j = 0$の下で自由度$N-p-1$のt分布に従う。
 [8.43]で追加した変数が1個だった場合の$F$は、この$t$の二乗になる。つまり、偏回帰係数の標準誤差を使った検定は、タイプIII平方和を使った検定と同じである。

(以上!)

雑記:データ解析 - 覚え書き:南風原「心理統計学の基礎」8章

rebuilt: 2020年11月16日 22:53
validate this page