論文:データ解析」カテゴリーアーカイブ

読了:Luce & Tukey (1964) 同時コンジョイント測定

 コンジョイント分析について調べていて、そのご先祖として誰も彼もが頻繁に引用するLuce & Tukey (1964)による歴史的論文を、実は誰も読んでないんじゃないか、という疑念を持った。
 だってさ、どなたの紹介をよんでも、いまいち雲をつかむような感じで、その意義がいまいち腑に落ちないんだもん。だいたい、あの「コンジョイント測定」ってのは、60-70年代に存在した公理的測定理論という超難解な分野の概念であるはずだ。そんなのを理解できる人がそれほど多いとは思えない。そうですよね? そうだといってください。

Luce, R.D., Tukey, J.W. (1964) Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. Journal of Mathematical Psychology. 1, 1-27.
続きを読む

読了: Graffelman & Aluja-Banet (2003) 主成分分析・対応分析におけるsupplementary variableの求め方と品質評価

 先日の真夜中、データを図示するという地味な作業をコリコリとやっていて、あれ? これってなんだっけ? と混乱してしまったことがあった。

 個体変量行列でも集計表でもなんでもいいけど、とにかく行列\(X\)があるとするじゃないですか。これを列中心化して、主成分分析やって、各変数(\(X\)の列)の第一主成分負荷と第二主成分負荷を座標にして、変数を二次元空間にマッピングしたとしますよね。同時に、各ケース(\(X\)の行)の第一主成分得点と第二主成分得点を座標にして、ケースを二次元空間にマッピングしたとしますよね。
 そこに誰かがやってきて、ちょっとちょっと、\(X\)と同じ列を持ってる追加のケースがあるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、主成分負荷を変えずにその追加ケースの主成分得点を出してケースの図に乗せてあげる。こういうことはよくある。これをsupplementary caseなどという。
 また別の誰かがやってきて、ちょっとちょっと、\(X\)と同じ行を持ってる追加の変数があるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、この変数の主成分負荷を出して変数の図に乗せてあげる。こういうこともよくある。これをsupplementary variableなどという。
 ここで、あれれ、と混乱してしまったのである。俺なにやってんだ?
続きを読む

読了:Treats, Sanchez, Vandebroek (2020) idefixパッケージであなたもベイジアン最適計画による離散選択実験ができる(なんなら個人レベル適応型の実験もできる)

Traets, F., Sanchez, D.G., Vandebroek, M. (2020) Generating Optimal Designs for Discrete Choice Experiments in R: The idefix Package. Journal of Statistical Software, 96(3).

 離散選択実験の実験計画を生成するRパッケージ idefix の解説。
 たしか昨年だったか、実践投入前の儀式として読んだのだが(なぜか出張先のホテルで)、バタバタしていてメモを取らなかった。中身をすっかり忘れてしまっているので、前半部分を読み直した。
続きを読む

読了: Vermeulan, Goos, Vandebroek (2007) 「どれも選ばない」選択肢が入っている選択型コンジョイント実験のD-最適計画

Vermeulen, B., Goos, P., Vandebroek, M. (2007) Models and optimal designs for conjoint choice experiments including a no-choice option. SSRN.

 選択型コンジョイント分析で「どれも選ばない」選択肢をいれるときの最適実験計画(←そういうのがあるんです)についての論文。
 なんか大学の紀要みたいな感じだし、もっとちゃんとしたのを探したほうがいいのかも…と思いながらめくったんだけど、これが大変勉強になった。
続きを読む

読了:Chrzan & Orme (2000) 選択型コンジョイント分析の実験計画のつくりかた

Chrzan, K., Orme, B. (2000) An Overview and Comparison of Design Strategies for Choice-Based Conjoint Analysis. Research Paper, Sawtooth Software.

 読んだものはなんでも記録しておこう、ということで…
 コンジョイント分析のソフト会社Sawtooth Softwareが公開しているTechnical Paperのひとつで、選択型コンジョイント分析の実験計画(どんなプロファイルをどうやって組み合わせて提示するか)について、理屈はともかくとしてどうやってつくるか、という話。非常に土臭い、他ではちょっと読めない話がまとまっている。
続きを読む

読了:Hallinan (1993) ワイブル分布七変化 (正確には五変化)

Hallinan, A.J. (1993) A Review of the Weibull Distribution. Journal of Quality Technology. 25(2), 85-93.

 先日、ひょんな事情により目を通した論文。
 ワイブル分布について調べていて、資料によって式が違うので大変混乱し、解説を探して見つけた次第である。ワイブル分布って工学とかで使う奴でしょ? 私は文系も文系なのにそんなの知るわけないじゃん? と思うわけだが、生きていく上ではいろんなことが起きる。
続きを読む

読了:Gelman & Carlin (2014) 諸君の検定力計算は甘い。タイプSエラーとタイプMエラーを求めなさい

Gelman, A., Carlin, J. (2014) Beyond Power Calculations: Assessing Type S(Sign) and Type M(Magnitude) Errors. Perspectives on Psychological Science, 9(6), 641-651.

 ずっと前に目を通して放置していた奴。こういうメモが散乱して収拾がつかなくなっている。

 Gelman兄貴らが心理学者向けにお送りする、検定力に関する解説論文。タイプSエラーとタイプMエラーという面白い概念が登場する。
 ふだんこういう論文はほげーっと脱力しながら目を通すのだけれど(そして読み終えると忘れてしまう)、今回は検定力の話で結構面倒くさいので、適宜メモをとりながら読んだ(それでも読み終えると忘れてしまっている)。
続きを読む

読了:津田ほか(2006) 高速のトンネルのランプはいつ切れるか(ワイブルハザードモデルのベイズ推定)

津田尚胤, 貝戸清之, 山本浩司, 小林潔司 (2006) ワイブル劣化ハザードモデルのベイズ推計法. 土木学会論文集F, 62(3), 473-491.
 土木施設の劣化を統計的に予測するためにハザードモデルをベイズ推定します、という話。ひょんな事情がありまして、昼飯のお茶漬けを啜りながら目を通した。えーっと、筆頭著者の方の修士論文とかかしらん?
続きを読む

読了:Debeer & Stroble (2020) Rのpartyパッケージでランダムフォレストの条件付きパーミュテーション重要性を求めていた諸君、悪いね、悪いね、ワリーネ・ディートリッヒ

Debeer, D., Stroble, C. (2020) Conditional permulation importance revisited. BMC Bioinformatics, 21:307.

 仕事の都合で読んだ。ランダム・フォレストにおいて変数重要性を評価する手法のひとつに、「他の変数で条件づけたパーミュテーション重要性」というのがあるんだけど、その算出方法についての論文。
 Rにおける既存の実装についていくつか疑問点があったのでなんとなく目を通して見たら、なんと著者らはRパッケージpartyの中の人であり(途中で気が付いた)、しかも、途中でなんだかとんでもないことを言い出した… 続きを読む

読了:Gregorutti, Michel, Saint-Pierre (2015) 変数グループの重要性指標

Gregorutti, B., Michel, B., Saint-Pierre, P. (2015) Grouped variable importance with random forests and application to multiple functional data analysis. Computational Statistics & Data Analysis, 90, 15-35.
 仕事の都合で読んだ奴。ランダムフォレストとかで、個々の変数についてのpermutation重要性じゃなくて、分析者が定義したなにかしらの変数グループについてpermutation重要性を求めるという論文。
 第一著者は、おそらくこの論文の提案手法を実装したであろうRパッケージRFgrooveを公開しているが、開発したきりメンテしておらず、CRANからは最近削除されている模様。
 28頁あるけど本文は19頁だ、なんとかなるさ!と思って読み始めたけど…
続きを読む

読了:Smith & Wakefield (2016) コウホート分析レビュー

Smith, T.R., Wakefield, J. (2016) A Review and Comparison of Age-Period-Cohort Models for Cancer Incidence. Statistical Science, 31(4), 591-610.

 いわゆるコウホート分析についてのレビュー。どうやら私の能力と根性を超える論文だが、都合により無理やり読んだ。主旨は以前に読んだ松本(2019)と似ている。
続きを読む

読了:Schmid, Held (2007) 君もBAMPパッケージで楽しい楽しいベイジアン・コウホート分析をしてみないかい

Schmid, V.J., Held, J. (2007) Bayesian Age-Period-Cohort Modeling and Prediction – BAMP. Journal of Statistical Software, 21(8).
 ベイジアン・コウホート分析のソフトウェアBAMPの解説書。この段階ではスタンドアローンのソフトだが、その後Rパッケージに移植されている。仕事の都合で、実戦投入前の儀式として読んだ。
続きを読む

読了:Asparouhov & Muthen (2021) よく聞け、これが残差SEMだ

Asparouhov, T., Muthen, B. (2021) Residual Structural Equation Models. Mplus.

 泣く子も黙る構造方程式モデリング用ソフトウェアMplusは、バージョンアップのたびになんらかの先進的すぎる謎機能を搭載してくることで有名である(私のなかで)。
 今月リリースされたVersion 8.7では、えーと、従来は残差動的構造方程式モデルのベイズ推定のみが可能であったラグ変数残差間回帰が単一レベルモデルの最尤推定・重みつき最小二乗推定・ベイズ推定へと拡張され、パネルデータのランダム切片クロスラグモデルならびにランダム切片自己回帰移動平均モデルの推定が可能となった、のだそうだ。
 はあ、そうですか、と虚ろな目でディスプレイに相槌を打つ私である。わからない。もうなにもわからない。
続きを読む

読了: Jackson(2019) Rのmsmパッケージで楽しいマルコフモデリング

Jackson, C. (2019) Multi-state modelling with R: the msm pachage. Version 1.6.8.

 パネルデータに多状態マルコフモデルをあてはめるRパッケージ msm の解説。実戦投入のための儀式として読んだ。もとはJ. Statistical Software の2011年の論文だそうだ。
 おっと、いまみたら今年9月に1.6.9が出ている… なんてこった…
続きを読む

読了:久保田(2021) コロナ危機のマクロ経済分析

久保田荘(2021) 新型コロナウィルス危機のマクロ経済分析. 医療経済研究, 33(1), 1-18.

 当面の仕事とはあんまり関係ないんだけど、面白そうなので「いつか読む」箱に放り込んであった論文。「いつか」じゃあきっと読まずに終わっちゃうだろうなと思い、仕事の気分転換に目を通した。
続きを読む

読了: Taylor & Letham (2017) Facebook社謹製ライブラリProphetはいったいなにをやっておるのか

Taylor, S.J., & Letham, B. (2017) Forecasting at scale. PeerJ Preprints.

 Facebookが公開している時系列予測ライブラリ Prophet のテクニカルペーパーに相当する資料。仕事の都合で目を通した。
 読み終えてから気が付いたけど、同名の記事がAmerican Statisticianに載っている。たぶん中身は同じだと思う。
 Prophetについては、検索すると日本語で解説しているブログ記事がたくさんヒットするので、そういうので勉強したほうが効率がいいんだろうけど… なんというか、気分の問題です。
続きを読む

読了:吉田・村井(2021) 心理学者たちよ、諸君の重回帰分析はここがおかしい

吉田寿夫・村井潤一郎(2021) 心理学研究における重回帰分析の適用に関わる諸問題. 心理学研究.

 心理学分野の観察研究における重回帰分析についてのユーザ向け啓蒙論文… なんだけど、2017-2019年の「心理学研究」誌に載った論文を集め、実名を挙げて斬りまくる。ひいいい。こういうの、英語の論文では珍しくないけど、日本語ではかなりレアですよね。
続きを読む

読了:岩崎(2021) 統計的因果推論の視点による重回帰分析

岩崎学(2021) 統計的因果推論の視点による重回帰分析. 日本統計学会誌, 50(2), 363-379.
 ファイル整理の途中で目を通した(仕事からの逃避ともいう)。日本統計学会賞の受賞記念論文。重回帰分析を教える人向けの啓蒙論文である。
続きを読む

読了: Brumback, He (2011) ウェイトつきデータから共通オッズ比を推定するためにあなたがお使いのMHオッズ比は、標本の層サイズが固定されていると考えると一致推定量でない

Brumback, B., He, Z. (2011) The Mantel-Haenszel estimator adapted for complex survey designs is not dually consistent. Statistics and Probability Letters, 81, 1465-1470.

 仕事の都合で致し方なく読んだ奴について記録しておくけど、正直、面白くも何ともない話である。(著者の先生、すいません…)
続きを読む

読了: Thompson & Wu (2008) ややこしい標本抽出デザインのウェイトをシミュレーションで求める

Thompson, M.E., Wu, C. (2008) Simulation-based randomized systematic PPS sampling under substitution of units. Survey Methodology, 34(1), 2-10.

 仕事の都合で読んだ奴。標本抽出デザインがややこしくて包含確率が解析的に出せないとき(ここではProportion-to-size標本抽出で回答拒否があるという場面を想定している)、計算機パワーで無理矢理なんとかしちゃうという話である。
 掲載誌はカナダ統計局が出している雑誌で、著者らはITC China Surveyというタバコについてのコホート調査の中の人らしい。
続きを読む