なんというか、たまにSNSとかwebの記事なんかをみると、大企業のデータサイエンティストなる華やかな人々がビジネスへの貢献について華やかに語っておられて、彼我のちがいにちょっと目眩がすることがある。ああいう人たちってふだんなに食ってんだろうか。ステーキとかかな。なんか知らん横文字の料理とかかな。すくなくとも私みたいに冷やご飯にのりたま振って流しのまえで立ち食いしたりはしないんだろうな。知らんけど。
まあとにかく、きっと皆さん私の知らないことをたくさん知っているので、たとえば目的変数がなにかの割合であるようなデータを渡されて回帰分析する羽目になったときも(突然に卑近な話になる)、きっとなにか私の知らない先端的な手法を使うのだろうなあと思う(いやいや、アシスタントに丸投げするんでしょうね)。いっぽう私はそのたびにこうジクジクと悩むわけです。毎度毎度binomial-logitでGLMしてていいの? たまにはなんかこう気の利いた誤差分布とかないわけ? 元の観察数がわかんなかったらロジット変換してOLSでいいの? なんかもっとパンクな手法はないわけ? とかなんとか。あーあ、残念な人生だ。
Cribari-Neto, F., Zeleis, A. (2010) Beta Regression in R. Journal of Statistical Software, 34(2), 1–24.
仕事の都合でざっと目を通した奴。実際に読んだのは上記文献ではなく、その改訂版らしき R のbetaregパッケージのvignetteである。ちょっと都合があって、betaregを実戦投入しようかと思ったことがあったので。
続きを読む