論文」カテゴリーアーカイブ

読了: Tsai & Bockenholt (2011) 順位付け・一対比較をSEMで分析する、ついでに共変量も別の結果変数も組み込む

Tshi, R.C., Bockenholt, U. (2011) Understanding Choice Behavior Beyond Option Scaling Using Structural Equation Models. Journal of Data Science, 9, 427-444.

 またも一対比較の話。いいかげん飽きてきた…

 Maydeu-Olivares and Bockenholt(2005)を拡張し、順序づけデータの分析をSEMで分析する際に共変量とか含める、という主旨。
 流石に今回は、どんな話かだいたい見当がつくような気がするので、かなり端折ってメモする。
続きを読む

読了:Pritikin(2020) 人々に評価項目ごとにモノとモノとの一対比較をしてもらったデータで評価項目の探索的因子分析をする(RのpcFactorStanパッケージ)

Pritikin, J.N. (2020) An exploratory factor model for ordinal paired comparison indicators. Heliyon, 6.

 一対比較データを扱うRパッケージのひとつにpcFactorStanというのがあって、その元論文。このパッケージを使うつもりはあまりないんだけど、順序尺度の一対比較データから刺激の個人効用を推定する、それもStanで… という点には大いに関心があるので、試しに目を通してみた。
 掲載誌は初めて見たけど、オープン・アクセス・ジャーナル。版元はCell Pressだから、そんなに変な雑誌ではない…と思いたい。
続きを読む

読了:Brown (2014) 一対比較・順序づけ課題のいろんな因子分析モデル・理想点モデルをひとつの枠組みで整理する

Brown, A.(2014) Item Response Models for Forced-Choice Questionnaires: A Common Framework. Psychometrika, 81(1), 135-60.

 先日より一対比較による個人差推定について延々考えているんだけど、もういい加減に飽きてきた…。
 これは参考になるかと思って読んでみた奴。
続きを読む

読了: Brown & Maydeu-Olivares (2012) 強制選択データのThurstonian IRTモデルをMplusで推定する

Brown, A., Maydeu-Olivares, A. (2012) Fitting a Thurstonian IRT model to forced-choice data using Mplus. Behavior Research Methods. 42(2).

 一対比較データからの個人効用推定の問題で延々と悩んでいる関係で、毒もくらわば皿まで、という気分で読んでみた奴。
続きを読む

読了:野々田・分寺・岡田 (2021) 一対比較で2因子を測定するときの推定方法

野々田聖一, 分寺杏介, 岡田謙介 (2021) 2因子を測定する一対比較型質問紙における推定法. 行動計量学, 48(2), 53-68.

 仕事の都合で延々と一対比較について考えているんだけど(官能評価みたいな古典的場面じゃなくて、むしろ効用の個人差を知りたいような場合の話)、もともとそんなに詳しいわけでも、すごく関心があるわけでもない話題で、正直、ちょっと疲れてきました。
 もっと心安らぐ話はないものだろうか… Web3.0とかさ… 知らんけど…
続きを読む

読了:Tsai(2003) 一対比較データに選好の個人差があるThurstonianモデルを当てはめるときの識別性について

Tsai, R.C. (2003) Remarks on the Identifiability of Thurstonian Paired Comparison Models under Multibple Judgments. Psychometrika, 68(3), 361-372.

 比較課題から刺激の効用を推定するときのモデルの識別性について悩むところ多く、なにかの足しになるかと思って読んでみた。先日読んだMaydeu-Olivares & Bockenholt(2005) で引用されていた論文。
続きを読む

読了: Bockenholt (2004) 比較判断で推定した効用に原点を持たせるための3つの工夫

Bockenholt, U. (2004) Comparative Judgments as an Alternative to Ratings: Identifying the Scale Origin. Psychological Methods, 9(4), 453-465.
 仕事の都合で悩むことがあって、なにかの足しになるかと思って読んでみた奴。
 比較課題や順位付け課題でもって刺激の効用というか評価を定量化したとき、常識的に考えるとその値の絶対的な大きさには意味がないんだけど、いやいや工夫すれば絶対的な大きさに意味を持たせることもできるんですよ、という論文。
続きを読む

読了: Burkner, Schulte, Holling (2019) 順位付けや一対比較課題の回答にThurstonian IRTモデルをあてはめて対象者の潜在特性を推定するのはどのくらい現実的なのか

Burkner, P.C., Shulte, N., Holling, H. (2019) On the Statistical and Practical Limitations of Thurstonian IRT Models. Educational and Psychological Measurement, 79(5), 827-854.
 Brown & Maydeu-Olivares (2011 Edu.Psych.Measurement)の後続研究らしい。ほんとは研究そのものにはあんまし関心なくて、RのthurstonianIRTパッケージについて知りたくてめくっただけなんだけど…
 あとで気がついたが、第一著者はRのbrmsパッケージ(Stanで回帰分析するパッケージ)の中の人だ。写真を拝見したところ若いお兄さんである。へええ。
続きを読む

読了:Mattos & Ramos (2021) 一対比較データのベイジアンBradley-TerryモデルをStanで推定するbpcsパッケージというのを作ったよ

Mattos, D.I., Ramos, E.M.S. (2021) Bayesian paired comparison with the bpcs package. Behavior Research Methods.
 題名のとおり、一対比較データをベイジアンモデルで分析しますという話。Rのbpcsパッケージの解説である。なにがどうベイジアンなのかを知りたくて目を通した。
続きを読む

読了:Maydeu-Olivares & Bockenholt (2005) 順位付け・一対比較データをSEMで分析する(というかMplusで分析する)

Maydeu-Olivares, A., Bockenholt, U. (2005) Structural Equation Modeling of Paired-Comparison and Ranking Data. Psychological Methods, 10(3), 285-304.

 仕事の都合で読んだ奴。
 順位付けや一対比較のデータをSEMのソフトで分析しましょう、という解説論文。supplementary materialとしてMplusのコードも用意されている。
続きを読む

読了: Bradlow (2005) 僕のコンジョイント分析ウィッシュリスト (コメント・返答つき)

Bradlow, E.T. (2005) Current issues and a ‘wish list’ for conjoint analysis (with comments and rejoinder), Applied Stochastic Models in Business and Industry, 21, 319-333.

 朝から晩までコンジョイント分析のことを考える日々が続き、もう疲れた… 疲れたよ… と呟きながらぼんやりgoogle検索していて、たまたま拾ったpdf。全く聞いたこともない学術誌に載った、全く文脈がわからない、5頁の短い論文、というかエッセイである。
続きを読む

読了:Donovan (2005) 航空業界のイールド・マネジメント

Donovan, A.W. (2005) Yield Management in the Airline Industory. Journal of Aviation/Aerospace Education & Research. 14(3).

 航空業界のイールド・マネジメントについての紹介。
 掲載誌については全く見当がつかないのだが、発行元はEmbry-Riddle Aeronautical Universityというところ。なんかこうディプロマ・ミルみたいなところだったらやだなあと思って検索してみたところ、航空・宇宙工学の名門中の名門、Wikipediaによれば「空のハーバード」と呼ばれている大学なのだそうだ。大変失礼いたしました。
続きを読む

読了:Luce & Tukey (1964) 同時コンジョイント測定

 コンジョイント分析について調べていて、そのご先祖として誰も彼もが頻繁に引用するLuce & Tukey (1964)による歴史的論文を、実は誰も読んでないんじゃないか、という疑念を持った。
 だってさ、どなたの紹介をよんでも、いまいち雲をつかむような感じで、その意義がいまいち腑に落ちないんだもん。だいたい、あの「コンジョイント測定」ってのは、60-70年代に存在した公理的測定理論という超難解な分野の概念であるはずだ。そんなのを理解できる人がそれほど多いとは思えない。そうですよね? そうだといってください。

Luce, R.D., Tukey, J.W. (1964) Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. Journal of Mathematical Psychology. 1, 1-27.
続きを読む

読了:Donaghy, et al.(1995) ホテル業界人のためのイールド・マネジメント入門

Donaghy, K., McMahon, U., McDowell, D. (1995) Yield Management: an overview. Int. J. Hospitality Management, 14(2), 139-150.

 イールド・マネジメントの概観論文。仕事の都合で読んだ。得意・不得意関わらず何だって読むのだが、それにしても節操がない。
 掲載誌の想定読者はホテルの実務家・研究者であろう。
続きを読む

読了:吉野(1989) 公理論的測定論の歴史

 ここしばらく、朝から晩までコンジョイント分析で頭がいっぱいだったのだが、物事なんでもそうであるように、これも調べ始めると限りなく奥が深い。いささか疲弊してしまった。
 こうなったら毒をくらわば皿までと思い、コンジョイント分析のご先祖としてよく引用されるLuce & Tukey (1964)を読みはじめたら、これがもうさっぱりわからない。昔の数理心理学には公理的測定理論というのがあって、この論文もそのひとつだと思うんだけど、統計手法や実証研究とは話の組み立てがまるで異なり、いま何の話をしているのかさえつかめないのである。これさあ… これを引用している先生方って、ほんとに読んだんですか…?
 いやまあ、私の理解力不足なんですけどね。だいたい私にわかるわけないじゃん。数理心理学なんて修士のときに Coombs, Dawes, & Tversky (1970) を読まされたのが唯一の接点だし、それだってほとんど寝ていた。

吉野諒三(1989) 公理論的測定論の歴史と展望. 心理学評論, 32(2), 119-135.
続きを読む

読了:Cliff (1992) 公理的測定理論、そして起こらなかった革命

 ここんところ朝から晩までコンジョイント分析について考えていたのだが(さすがにちょっと飽きてきた)、いろいろ調べているとどうしても突き当たってしまうのが、マーケティング分野においてコンジョイント分析が普及する前、数理心理学の基礎研究において登場したコンジョイント測定の理論である。
 嗚呼、公理的測定理論、1960年代心理学の精華、わが青春のアルカディア。Luce, Suppes, Tverskyらによる名著”Foundations of Measurement”は、心理学科の院生であった我々の必携のバイブルであり、隅から隅まで穴が開くほどに熟読したものだ。
 嘘です。なんかこう「心理測定かくあるべし」的なのを数式で定義する超難しい理論が大昔にあったらしいとなんとなく聞き及んでいるが、たまーにそういう話を見かけてもチンプンカンプンだったし、勉強したいなんて露ほども思わなかった。”Foundations of Measurement”とかいう古い三巻本が書庫にあったような気がするけれど、そんなの手も触れませんでしたね。

Cliff, N. (1992) Abstract Measurement Theory and the Revolution That Never Happened. Psychological Science, 3(3), 186-190.
続きを読む

読了: Graffelman & Aluja-Banet (2003) 主成分分析・対応分析におけるsupplementary variableの求め方と品質評価

 先日の真夜中、データを図示するという地味な作業をコリコリとやっていて、あれ? これってなんだっけ? と混乱してしまったことがあった。

 個体変量行列でも集計表でもなんでもいいけど、とにかく行列\(X\)があるとするじゃないですか。これを列中心化して、主成分分析やって、各変数(\(X\)の列)の第一主成分負荷と第二主成分負荷を座標にして、変数を二次元空間にマッピングしたとしますよね。同時に、各ケース(\(X\)の行)の第一主成分得点と第二主成分得点を座標にして、ケースを二次元空間にマッピングしたとしますよね。
 そこに誰かがやってきて、ちょっとちょっと、\(X\)と同じ列を持ってる追加のケースがあるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、主成分負荷を変えずにその追加ケースの主成分得点を出してケースの図に乗せてあげる。こういうことはよくある。これをsupplementary caseなどという。
 また別の誰かがやってきて、ちょっとちょっと、\(X\)と同じ行を持ってる追加の変数があるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、この変数の主成分負荷を出して変数の図に乗せてあげる。こういうこともよくある。これをsupplementary variableなどという。
 ここで、あれれ、と混乱してしまったのである。俺なにやってんだ?
続きを読む

読了:Treats, Sanchez, Vandebroek (2020) idefixパッケージであなたもベイジアン最適計画による離散選択実験ができる(なんなら個人レベル適応型の実験もできる)

Traets, F., Sanchez, D.G., Vandebroek, M. (2020) Generating Optimal Designs for Discrete Choice Experiments in R: The idefix Package. Journal of Statistical Software, 96(3).

 離散選択実験の実験計画を生成するRパッケージ idefix の解説。
 たしか昨年だったか、実践投入前の儀式として読んだのだが(なぜか出張先のホテルで)、バタバタしていてメモを取らなかった。中身をすっかり忘れてしまっているので、前半部分を読み直した。
続きを読む

読了: Vermeulan, Goos, Vandebroek (2007) 「どれも選ばない」選択肢が入っている選択型コンジョイント実験のD-最適計画

Vermeulen, B., Goos, P., Vandebroek, M. (2007) Models and optimal designs for conjoint choice experiments including a no-choice option. SSRN.

 選択型コンジョイント分析で「どれも選ばない」選択肢をいれるときの最適実験計画(←そういうのがあるんです)についての論文。
 なんか大学の紀要みたいな感じだし、もっとちゃんとしたのを探したほうがいいのかも…と思いながらめくったんだけど、これが大変勉強になった。
続きを読む