Mattos, D.I., Ramos, E.M.S. (2021) Bayesian paired comparison with the bpcs package. Behavior Research Methods.
題名のとおり、一対比較データをベイジアンモデルで分析しますという話。Rのbpcsパッケージの解説である。なにがどうベイジアンなのかを知りたくて目を通した。
続きを読む
「論文」カテゴリーアーカイブ
読了:Maydeu-Olivares & Bockenholt (2005) 順位付け・一対比較データをSEMで分析する(というかMplusで分析する)
Maydeu-Olivares, A., Bockenholt, U. (2005) Structural Equation Modeling of Paired-Comparison and Ranking Data. Psychological Methods, 10(3), 285-304.
仕事の都合で読んだ奴。
順位付けや一対比較のデータをSEMのソフトで分析しましょう、という解説論文。supplementary materialとしてMplusのコードも用意されている。
続きを読む
読了: Bradlow (2005) 僕のコンジョイント分析ウィッシュリスト (コメント・返答つき)
Bradlow, E.T. (2005) Current issues and a ‘wish list’ for conjoint analysis (with comments and rejoinder), Applied Stochastic Models in Business and Industry, 21, 319-333.
朝から晩までコンジョイント分析のことを考える日々が続き、もう疲れた… 疲れたよ… と呟きながらぼんやりgoogle検索していて、たまたま拾ったpdf。全く聞いたこともない学術誌に載った、全く文脈がわからない、5頁の短い論文、というかエッセイである。
続きを読む
読了:Donovan (2005) 航空業界のイールド・マネジメント
Donovan, A.W. (2005) Yield Management in the Airline Industory. Journal of Aviation/Aerospace Education & Research. 14(3).
航空業界のイールド・マネジメントについての紹介。
掲載誌については全く見当がつかないのだが、発行元はEmbry-Riddle Aeronautical Universityというところ。なんかこうディプロマ・ミルみたいなところだったらやだなあと思って検索してみたところ、航空・宇宙工学の名門中の名門、Wikipediaによれば「空のハーバード」と呼ばれている大学なのだそうだ。大変失礼いたしました。
続きを読む
読了:Luce & Tukey (1964) 同時コンジョイント測定
コンジョイント分析について調べていて、そのご先祖として誰も彼もが頻繁に引用するLuce & Tukey (1964)による歴史的論文を、実は誰も読んでないんじゃないか、という疑念を持った。
だってさ、どなたの紹介をよんでも、いまいち雲をつかむような感じで、その意義がいまいち腑に落ちないんだもん。だいたい、あの「コンジョイント測定」ってのは、60-70年代に存在した公理的測定理論という超難解な分野の概念であるはずだ。そんなのを理解できる人がそれほど多いとは思えない。そうですよね? そうだといってください。
Luce, R.D., Tukey, J.W. (1964) Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. Journal of Mathematical Psychology. 1, 1-27.
続きを読む
読了:Donaghy, et al.(1995) ホテル業界人のためのイールド・マネジメント入門
Donaghy, K., McMahon, U., McDowell, D. (1995) Yield Management: an overview. Int. J. Hospitality Management, 14(2), 139-150.
イールド・マネジメントの概観論文。仕事の都合で読んだ。得意・不得意関わらず何だって読むのだが、それにしても節操がない。
掲載誌の想定読者はホテルの実務家・研究者であろう。
続きを読む
読了:吉野(1989) 公理論的測定論の歴史
ここしばらく、朝から晩までコンジョイント分析で頭がいっぱいだったのだが、物事なんでもそうであるように、これも調べ始めると限りなく奥が深い。いささか疲弊してしまった。
こうなったら毒をくらわば皿までと思い、コンジョイント分析のご先祖としてよく引用されるLuce & Tukey (1964)を読みはじめたら、これがもうさっぱりわからない。昔の数理心理学には公理的測定理論というのがあって、この論文もそのひとつだと思うんだけど、統計手法や実証研究とは話の組み立てがまるで異なり、いま何の話をしているのかさえつかめないのである。これさあ… これを引用している先生方って、ほんとに読んだんですか…?
いやまあ、私の理解力不足なんですけどね。だいたい私にわかるわけないじゃん。数理心理学なんて修士のときに Coombs, Dawes, & Tversky (1970) を読まされたのが唯一の接点だし、それだってほとんど寝ていた。
吉野諒三(1989) 公理論的測定論の歴史と展望. 心理学評論, 32(2), 119-135.
続きを読む
読了:Cliff (1992) 公理的測定理論、そして起こらなかった革命
ここんところ朝から晩までコンジョイント分析について考えていたのだが(さすがにちょっと飽きてきた)、いろいろ調べているとどうしても突き当たってしまうのが、マーケティング分野においてコンジョイント分析が普及する前、数理心理学の基礎研究において登場したコンジョイント測定の理論である。
嗚呼、公理的測定理論、1960年代心理学の精華、わが青春のアルカディア。Luce, Suppes, Tverskyらによる名著”Foundations of Measurement”は、心理学科の院生であった我々の必携のバイブルであり、隅から隅まで穴が開くほどに熟読したものだ。
嘘です。なんかこう「心理測定かくあるべし」的なのを数式で定義する超難しい理論が大昔にあったらしいとなんとなく聞き及んでいるが、たまーにそういう話を見かけてもチンプンカンプンだったし、勉強したいなんて露ほども思わなかった。”Foundations of Measurement”とかいう古い三巻本が書庫にあったような気がするけれど、そんなの手も触れませんでしたね。
Cliff, N. (1992) Abstract Measurement Theory and the Revolution That Never Happened. Psychological Science, 3(3), 186-190.
続きを読む
読了: Graffelman & Aluja-Banet (2003) 主成分分析・対応分析におけるsupplementary variableの求め方と品質評価
先日の真夜中、データを図示するという地味な作業をコリコリとやっていて、あれ? これってなんだっけ? と混乱してしまったことがあった。
個体変量行列でも集計表でもなんでもいいけど、とにかく行列\(X\)があるとするじゃないですか。これを列中心化して、主成分分析やって、各変数(\(X\)の列)の第一主成分負荷と第二主成分負荷を座標にして、変数を二次元空間にマッピングしたとしますよね。同時に、各ケース(\(X\)の行)の第一主成分得点と第二主成分得点を座標にして、ケースを二次元空間にマッピングしたとしますよね。
そこに誰かがやってきて、ちょっとちょっと、\(X\)と同じ列を持ってる追加のケースがあるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、主成分負荷を変えずにその追加ケースの主成分得点を出してケースの図に乗せてあげる。こういうことはよくある。これをsupplementary caseなどという。
また別の誰かがやってきて、ちょっとちょっと、\(X\)と同じ行を持ってる追加の変数があるんだけどさ、その図に無理やり乗っけてくれない? と云ってきたとしよう。いいですよってんで、この変数の主成分負荷を出して変数の図に乗せてあげる。こういうこともよくある。これをsupplementary variableなどという。
ここで、あれれ、と混乱してしまったのである。俺なにやってんだ?
続きを読む
読了:Treats, Sanchez, Vandebroek (2020) idefixパッケージであなたもベイジアン最適計画による離散選択実験ができる(なんなら個人レベル適応型の実験もできる)
Traets, F., Sanchez, D.G., Vandebroek, M. (2020) Generating Optimal Designs for Discrete Choice Experiments in R: The idefix Package. Journal of Statistical Software, 96(3).
離散選択実験の実験計画を生成するRパッケージ idefix の解説。
たしか昨年だったか、実践投入前の儀式として読んだのだが(なぜか出張先のホテルで)、バタバタしていてメモを取らなかった。中身をすっかり忘れてしまっているので、前半部分を読み直した。
続きを読む
読了: Vermeulan, Goos, Vandebroek (2007) 「どれも選ばない」選択肢が入っている選択型コンジョイント実験のD-最適計画
Vermeulen, B., Goos, P., Vandebroek, M. (2007) Models and optimal designs for conjoint choice experiments including a no-choice option. SSRN.
選択型コンジョイント分析で「どれも選ばない」選択肢をいれるときの最適実験計画(←そういうのがあるんです)についての論文。
なんか大学の紀要みたいな感じだし、もっとちゃんとしたのを探したほうがいいのかも…と思いながらめくったんだけど、これが大変勉強になった。
続きを読む
読了:Chrzan & Orme (2000) 選択型コンジョイント分析の実験計画のつくりかた
Chrzan, K., Orme, B. (2000) An Overview and Comparison of Design Strategies for Choice-Based Conjoint Analysis. Research Paper, Sawtooth Software.
読んだものはなんでも記録しておこう、ということで…
コンジョイント分析のソフト会社Sawtooth Softwareが公開しているTechnical Paperのひとつで、選択型コンジョイント分析の実験計画(どんなプロファイルをどうやって組み合わせて提示するか)について、理屈はともかくとしてどうやってつくるか、という話。非常に土臭い、他ではちょっと読めない話がまとまっている。
続きを読む
読了:張(2021) 近年の香港映画における「病」の意味
張宇博(2021) 近年の香港映画における「病」の意味 -『一念無明』、『幸運是我』を例として-, 早稲田大学大学院文学研究科紀要, 66, 483-496.
読んだものはなんでも記録しておこう、ということで…
おそらくは院生さんによる紀要論文。たまたまみつけて読み耽った。
続きを読む
読了:Hallinan (1993) ワイブル分布七変化 (正確には五変化)
Hallinan, A.J. (1993) A Review of the Weibull Distribution. Journal of Quality Technology. 25(2), 85-93.
先日、ひょんな事情により目を通した論文。
ワイブル分布について調べていて、資料によって式が違うので大変混乱し、解説を探して見つけた次第である。ワイブル分布って工学とかで使う奴でしょ? 私は文系も文系なのにそんなの知るわけないじゃん? と思うわけだが、生きていく上ではいろんなことが起きる。
続きを読む
読了:Gelman & Carlin (2014) 諸君の検定力計算は甘い。タイプSエラーとタイプMエラーを求めなさい
Gelman, A., Carlin, J. (2014) Beyond Power Calculations: Assessing Type S(Sign) and Type M(Magnitude) Errors. Perspectives on Psychological Science, 9(6), 641-651.
ずっと前に目を通して放置していた奴。こういうメモが散乱して収拾がつかなくなっている。
Gelman兄貴らが心理学者向けにお送りする、検定力に関する解説論文。タイプSエラーとタイプMエラーという面白い概念が登場する。
ふだんこういう論文はほげーっと脱力しながら目を通すのだけれど(そして読み終えると忘れてしまう)、今回は検定力の話で結構面倒くさいので、適宜メモをとりながら読んだ(それでも読み終えると忘れてしまっている)。
続きを読む
読了:津田ほか(2006) 高速のトンネルのランプはいつ切れるか(ワイブルハザードモデルのベイズ推定)
津田尚胤, 貝戸清之, 山本浩司, 小林潔司 (2006) ワイブル劣化ハザードモデルのベイズ推計法. 土木学会論文集F, 62(3), 473-491.
土木施設の劣化を統計的に予測するためにハザードモデルをベイズ推定します、という話。ひょんな事情がありまして、昼飯のお茶漬けを啜りながら目を通した。えーっと、筆頭著者の方の修士論文とかかしらん?
続きを読む
読了:Ng, Wang, Dai (2021) 係数が時変しまくるMMM by Uber
Ng, E., Wang, Z., Dai, A. (2021) Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling. arXiv:2106.03322v3.
ずいぶん前に目を通してメモをとった奴。整理の都合上載せておく。
著者らはUberの人。たぶんadKDD2021での発表だと思う。
続きを読む
読了:Debeer & Stroble (2020) Rのpartyパッケージでランダムフォレストの条件付きパーミュテーション重要性を求めていた諸君、悪いね、悪いね、ワリーネ・ディートリッヒ
Debeer, D., Stroble, C. (2020) Conditional permulation importance revisited. BMC Bioinformatics, 21:307.
仕事の都合で読んだ。ランダム・フォレストにおいて変数重要性を評価する手法のひとつに、「他の変数で条件づけたパーミュテーション重要性」というのがあるんだけど、その算出方法についての論文。
Rにおける既存の実装についていくつか疑問点があったのでなんとなく目を通して見たら、なんと著者らはRパッケージpartyの中の人であり(途中で気が付いた)、しかも、途中でなんだかとんでもないことを言い出した… 続きを読む
読了:Gregorutti, Michel, Saint-Pierre (2015) 変数グループの重要性指標
Gregorutti, B., Michel, B., Saint-Pierre, P. (2015) Grouped variable importance with random forests and application to multiple functional data analysis. Computational Statistics & Data Analysis, 90, 15-35.
仕事の都合で読んだ奴。ランダムフォレストとかで、個々の変数についてのpermutation重要性じゃなくて、分析者が定義したなにかしらの変数グループについてpermutation重要性を求めるという論文。
第一著者は、おそらくこの論文の提案手法を実装したであろうRパッケージRFgrooveを公開しているが、開発したきりメンテしておらず、CRANからは最近削除されている模様。
28頁あるけど本文は19頁だ、なんとかなるさ!と思って読み始めたけど…
続きを読む
読了:Smith & Wakefield (2016) コウホート分析レビュー
Smith, T.R., Wakefield, J. (2016) A Review and Comparison of Age-Period-Cohort Models for Cancer Incidence. Statistical Science, 31(4), 591-610.
いわゆるコウホート分析についてのレビュー。どうやら私の能力と根性を超える論文だが、都合により無理やり読んだ。主旨は以前に読んだ松本(2019)と似ている。
続きを読む